Spaces:
Build error
Build error
Commit
·
67a8158
0
Parent(s):
Duplicate from shi-labs/Versatile-Diffusion
Browse filesCo-authored-by: Xingqian Xu <[email protected]>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +37 -0
- .gitignore +7 -0
- README.md +15 -0
- app.py +729 -0
- assets/benz.jpg +3 -0
- assets/boy_and_girl.jpg +3 -0
- assets/church.jpg +3 -0
- assets/firework.jpg +3 -0
- assets/ghibli.jpg +3 -0
- assets/horse.png +3 -0
- assets/house_by_lake.jpg +3 -0
- assets/matisse.jpg +3 -0
- assets/night_light.jpg +3 -0
- assets/penguin.png +3 -0
- assets/san_diego.jpg +3 -0
- assets/scream.jpg +3 -0
- assets/space.jpg +3 -0
- assets/tiger.jpg +3 -0
- assets/train.jpg +3 -0
- assets/vermeer.jpg +3 -0
- configs/model/clip.yaml +50 -0
- configs/model/openai_unet.yaml +72 -0
- configs/model/optimus.yaml +102 -0
- configs/model/sd.yaml +68 -0
- configs/model/vd.yaml +61 -0
- lib/__init__.py +0 -0
- lib/cfg_helper.py +664 -0
- lib/cfg_holder.py +28 -0
- lib/data_factory/__init__.py +6 -0
- lib/data_factory/common/__init__.py +6 -0
- lib/data_factory/common/ds_base.py +272 -0
- lib/data_factory/common/ds_estimator.py +39 -0
- lib/data_factory/common/ds_formatter.py +37 -0
- lib/data_factory/common/ds_loader.py +96 -0
- lib/data_factory/common/ds_sampler.py +273 -0
- lib/data_factory/common/ds_transform.py +177 -0
- lib/evaluator/__init__.py +1 -0
- lib/evaluator/eva_base.py +292 -0
- lib/evaluator/eva_null.py +25 -0
- lib/experiments/__init__.py +0 -0
- lib/experiments/sd_default.py +441 -0
- lib/log_service.py +166 -0
- lib/model_zoo/__init__.py +4 -0
- lib/model_zoo/attention.py +435 -0
- lib/model_zoo/autoencoder.py +428 -0
- lib/model_zoo/bert.py +142 -0
- lib/model_zoo/clip.py +226 -0
- lib/model_zoo/clip_justin/__init__.py +1 -0
- lib/model_zoo/clip_justin/clip.py +237 -0
- lib/model_zoo/clip_justin/model.py +436 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.vscode/
|
3 |
+
src/
|
4 |
+
data/
|
5 |
+
data
|
6 |
+
log/
|
7 |
+
log
|
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Versatile Diffusion
|
3 |
+
emoji: null
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.9.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
python_version: 3.8.5
|
12 |
+
duplicated_from: shi-labs/Versatile-Diffusion
|
13 |
+
---
|
14 |
+
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
import numpy as np
|
7 |
+
import numpy.random as npr
|
8 |
+
from contextlib import nullcontext
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torchvision.transforms as tvtrans
|
12 |
+
from lib.cfg_helper import model_cfg_bank
|
13 |
+
from lib.model_zoo import get_model
|
14 |
+
from lib.model_zoo.ddim_vd import DDIMSampler_VD, DDIMSampler_VD_DualContext
|
15 |
+
from lib.model_zoo.ddim_dualcontext import DDIMSampler_DualContext
|
16 |
+
|
17 |
+
from lib.experiments.sd_default import color_adjust
|
18 |
+
|
19 |
+
n_sample_image = 2
|
20 |
+
n_sample_text = 4
|
21 |
+
cache_examples = True
|
22 |
+
|
23 |
+
class vd_inference(object):
|
24 |
+
def __init__(self, type='official'):
|
25 |
+
if type in ['dc', '2-flow']:
|
26 |
+
cfgm_name = 'vd_dc_noema'
|
27 |
+
sampler = DDIMSampler_DualContext
|
28 |
+
pth = 'pretrained/vd-dc.pth'
|
29 |
+
elif type in ['official', '4-flow']:
|
30 |
+
cfgm_name = 'vd_noema'
|
31 |
+
sampler = DDIMSampler_VD
|
32 |
+
pth = 'pretrained/vd-official.pth'
|
33 |
+
cfgm = model_cfg_bank()(cfgm_name)
|
34 |
+
net = get_model()(cfgm)
|
35 |
+
|
36 |
+
sd = torch.load(pth, map_location='cpu')
|
37 |
+
net.load_state_dict(sd, strict=False)
|
38 |
+
|
39 |
+
self.use_cuda = torch.cuda.is_available()
|
40 |
+
if self.use_cuda:
|
41 |
+
net.to('cuda')
|
42 |
+
self.model_name = cfgm_name
|
43 |
+
self.net = net
|
44 |
+
self.sampler = sampler(net)
|
45 |
+
|
46 |
+
def regularize_image(self, x):
|
47 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
48 |
+
if isinstance(x, str):
|
49 |
+
x = Image.open(x).resize([512, 512], resample=BICUBIC)
|
50 |
+
x = tvtrans.ToTensor()(x)
|
51 |
+
elif isinstance(x, PIL.Image.Image):
|
52 |
+
x = x.resize([512, 512], resample=BICUBIC)
|
53 |
+
x = tvtrans.ToTensor()(x)
|
54 |
+
elif isinstance(x, np.ndarray):
|
55 |
+
x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
|
56 |
+
x = tvtrans.ToTensor()(x)
|
57 |
+
elif isinstance(x, torch.Tensor):
|
58 |
+
pass
|
59 |
+
else:
|
60 |
+
assert False, 'Unknown image type'
|
61 |
+
|
62 |
+
assert (x.shape[1]==512) & (x.shape[2]==512), \
|
63 |
+
'Wrong image size'
|
64 |
+
if self.use_cuda:
|
65 |
+
x = x.to('cuda')
|
66 |
+
return x
|
67 |
+
|
68 |
+
def decode(self, z, xtype, ctype, color_adj='None', color_adj_to=None):
|
69 |
+
net = self.net
|
70 |
+
if xtype == 'image':
|
71 |
+
x = net.autokl_decode(z)
|
72 |
+
|
73 |
+
color_adj_flag = (color_adj!='None') and (color_adj is not None)
|
74 |
+
color_adj_simple = color_adj=='Simple'
|
75 |
+
color_adj_keep_ratio = 0.5
|
76 |
+
|
77 |
+
if color_adj_flag and (ctype=='vision'):
|
78 |
+
x_adj = []
|
79 |
+
for xi in x:
|
80 |
+
color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
|
81 |
+
xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
|
82 |
+
x_adj.append(xi_adj)
|
83 |
+
x = x_adj
|
84 |
+
else:
|
85 |
+
x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
|
86 |
+
x = [tvtrans.ToPILImage()(xi) for xi in x]
|
87 |
+
return x
|
88 |
+
|
89 |
+
elif xtype == 'text':
|
90 |
+
prompt_temperature = 1.0
|
91 |
+
prompt_merge_same_adj_word = True
|
92 |
+
x = net.optimus_decode(z, temperature=prompt_temperature)
|
93 |
+
if prompt_merge_same_adj_word:
|
94 |
+
xnew = []
|
95 |
+
for xi in x:
|
96 |
+
xi_split = xi.split()
|
97 |
+
xinew = []
|
98 |
+
for idxi, wi in enumerate(xi_split):
|
99 |
+
if idxi!=0 and wi==xi_split[idxi-1]:
|
100 |
+
continue
|
101 |
+
xinew.append(wi)
|
102 |
+
xnew.append(' '.join(xinew))
|
103 |
+
x = xnew
|
104 |
+
return x
|
105 |
+
|
106 |
+
def inference(self, xtype, cin, ctype, scale=7.5, n_samples=None, color_adj=None,):
|
107 |
+
net = self.net
|
108 |
+
sampler = self.sampler
|
109 |
+
ddim_steps = 50
|
110 |
+
ddim_eta = 0.0
|
111 |
+
|
112 |
+
if xtype == 'image':
|
113 |
+
n_samples = n_sample_image if n_samples is None else n_samples
|
114 |
+
elif xtype == 'text':
|
115 |
+
n_samples = n_sample_text if n_samples is None else n_samples
|
116 |
+
|
117 |
+
if ctype in ['prompt', 'text']:
|
118 |
+
c = net.clip_encode_text(n_samples * [cin])
|
119 |
+
u = None
|
120 |
+
if scale != 1.0:
|
121 |
+
u = net.clip_encode_text(n_samples * [""])
|
122 |
+
|
123 |
+
elif ctype in ['vision', 'image']:
|
124 |
+
cin = self.regularize_image(cin)
|
125 |
+
ctemp = cin*2 - 1
|
126 |
+
ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
|
127 |
+
c = net.clip_encode_vision(ctemp)
|
128 |
+
u = None
|
129 |
+
if scale != 1.0:
|
130 |
+
dummy = torch.zeros_like(ctemp)
|
131 |
+
u = net.clip_encode_vision(dummy)
|
132 |
+
|
133 |
+
if xtype == 'image':
|
134 |
+
h, w = [512, 512]
|
135 |
+
shape = [n_samples, 4, h//8, w//8]
|
136 |
+
z, _ = sampler.sample(
|
137 |
+
steps=ddim_steps,
|
138 |
+
shape=shape,
|
139 |
+
conditioning=c,
|
140 |
+
unconditional_guidance_scale=scale,
|
141 |
+
unconditional_conditioning=u,
|
142 |
+
xtype=xtype, ctype=ctype,
|
143 |
+
eta=ddim_eta,
|
144 |
+
verbose=False,)
|
145 |
+
x = self.decode(z, xtype, ctype, color_adj=color_adj, color_adj_to=cin)
|
146 |
+
return x
|
147 |
+
|
148 |
+
elif xtype == 'text':
|
149 |
+
n = 768
|
150 |
+
shape = [n_samples, n]
|
151 |
+
z, _ = sampler.sample(
|
152 |
+
steps=ddim_steps,
|
153 |
+
shape=shape,
|
154 |
+
conditioning=c,
|
155 |
+
unconditional_guidance_scale=scale,
|
156 |
+
unconditional_conditioning=u,
|
157 |
+
xtype=xtype, ctype=ctype,
|
158 |
+
eta=ddim_eta,
|
159 |
+
verbose=False,)
|
160 |
+
x = self.decode(z, xtype, ctype)
|
161 |
+
return x
|
162 |
+
|
163 |
+
def application_disensemble(self, cin, n_samples=None, level=0, color_adj=None,):
|
164 |
+
net = self.net
|
165 |
+
scale = 7.5
|
166 |
+
sampler = self.sampler
|
167 |
+
ddim_steps = 50
|
168 |
+
ddim_eta = 0.0
|
169 |
+
n_samples = n_sample_image if n_samples is None else n_samples
|
170 |
+
|
171 |
+
cin = self.regularize_image(cin)
|
172 |
+
ctemp = cin*2 - 1
|
173 |
+
ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
|
174 |
+
c = net.clip_encode_vision(ctemp)
|
175 |
+
u = None
|
176 |
+
if scale != 1.0:
|
177 |
+
dummy = torch.zeros_like(ctemp)
|
178 |
+
u = net.clip_encode_vision(dummy)
|
179 |
+
|
180 |
+
if level == 0:
|
181 |
+
pass
|
182 |
+
else:
|
183 |
+
c_glb = c[:, 0:1]
|
184 |
+
c_loc = c[:, 1: ]
|
185 |
+
u_glb = u[:, 0:1]
|
186 |
+
u_loc = u[:, 1: ]
|
187 |
+
|
188 |
+
if level == -1:
|
189 |
+
c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=1)
|
190 |
+
u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=1)
|
191 |
+
if level == -2:
|
192 |
+
c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=2)
|
193 |
+
u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=2)
|
194 |
+
if level == 1:
|
195 |
+
c_loc = self.find_low_rank(c_loc, demean=True, q=10)
|
196 |
+
u_loc = self.find_low_rank(u_loc, demean=True, q=10)
|
197 |
+
if level == 2:
|
198 |
+
c_loc = self.find_low_rank(c_loc, demean=True, q=2)
|
199 |
+
u_loc = self.find_low_rank(u_loc, demean=True, q=2)
|
200 |
+
|
201 |
+
c = torch.cat([c_glb, c_loc], dim=1)
|
202 |
+
u = torch.cat([u_glb, u_loc], dim=1)
|
203 |
+
|
204 |
+
h, w = [512, 512]
|
205 |
+
shape = [n_samples, 4, h//8, w//8]
|
206 |
+
z, _ = sampler.sample(
|
207 |
+
steps=ddim_steps,
|
208 |
+
shape=shape,
|
209 |
+
conditioning=c,
|
210 |
+
unconditional_guidance_scale=scale,
|
211 |
+
unconditional_conditioning=u,
|
212 |
+
xtype='image', ctype='vision',
|
213 |
+
eta=ddim_eta,
|
214 |
+
verbose=False,)
|
215 |
+
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=cin)
|
216 |
+
return x
|
217 |
+
|
218 |
+
def find_low_rank(self, x, demean=True, q=20, niter=10):
|
219 |
+
if demean:
|
220 |
+
x_mean = x.mean(-1, keepdim=True)
|
221 |
+
x_input = x - x_mean
|
222 |
+
else:
|
223 |
+
x_input = x
|
224 |
+
|
225 |
+
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
|
226 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
227 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
228 |
+
|
229 |
+
if demean:
|
230 |
+
x_lowrank += x_mean
|
231 |
+
return x_lowrank
|
232 |
+
|
233 |
+
def remove_low_rank(self, x, demean=True, q=20, niter=10, q_remove=10):
|
234 |
+
if demean:
|
235 |
+
x_mean = x.mean(-1, keepdim=True)
|
236 |
+
x_input = x - x_mean
|
237 |
+
else:
|
238 |
+
x_input = x
|
239 |
+
|
240 |
+
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
|
241 |
+
s[:, 0:q_remove] = 0
|
242 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
243 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
244 |
+
|
245 |
+
if demean:
|
246 |
+
x_lowrank += x_mean
|
247 |
+
return x_lowrank
|
248 |
+
|
249 |
+
def application_dualguided(self, cim, ctx, n_samples=None, mixing=0.5, color_adj=None, ):
|
250 |
+
net = self.net
|
251 |
+
scale = 7.5
|
252 |
+
sampler = DDIMSampler_VD_DualContext(net)
|
253 |
+
ddim_steps = 50
|
254 |
+
ddim_eta = 0.0
|
255 |
+
n_samples = n_sample_image if n_samples is None else n_samples
|
256 |
+
|
257 |
+
ctemp0 = self.regularize_image(cim)
|
258 |
+
ctemp1 = ctemp0*2 - 1
|
259 |
+
ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
|
260 |
+
cim = net.clip_encode_vision(ctemp1)
|
261 |
+
uim = None
|
262 |
+
if scale != 1.0:
|
263 |
+
dummy = torch.zeros_like(ctemp1)
|
264 |
+
uim = net.clip_encode_vision(dummy)
|
265 |
+
|
266 |
+
ctx = net.clip_encode_text(n_samples * [ctx])
|
267 |
+
utx = None
|
268 |
+
if scale != 1.0:
|
269 |
+
utx = net.clip_encode_text(n_samples * [""])
|
270 |
+
|
271 |
+
h, w = [512, 512]
|
272 |
+
shape = [n_samples, 4, h//8, w//8]
|
273 |
+
|
274 |
+
z, _ = sampler.sample_dc(
|
275 |
+
steps=ddim_steps,
|
276 |
+
shape=shape,
|
277 |
+
first_conditioning=[uim, cim],
|
278 |
+
second_conditioning=[utx, ctx],
|
279 |
+
unconditional_guidance_scale=scale,
|
280 |
+
xtype='image',
|
281 |
+
first_ctype='vision',
|
282 |
+
second_ctype='prompt',
|
283 |
+
eta=ddim_eta,
|
284 |
+
verbose=False,
|
285 |
+
mixed_ratio=(1-mixing), )
|
286 |
+
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
|
287 |
+
return x
|
288 |
+
|
289 |
+
def application_i2t2i(self, cim, ctx_n, ctx_p, n_samples=None, color_adj=None,):
|
290 |
+
net = self.net
|
291 |
+
scale = 7.5
|
292 |
+
sampler = DDIMSampler_VD_DualContext(net)
|
293 |
+
ddim_steps = 50
|
294 |
+
ddim_eta = 0.0
|
295 |
+
prompt_temperature = 1.0
|
296 |
+
n_samples = n_sample_image if n_samples is None else n_samples
|
297 |
+
|
298 |
+
ctemp0 = self.regularize_image(cim)
|
299 |
+
ctemp1 = ctemp0*2 - 1
|
300 |
+
ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
|
301 |
+
cim = net.clip_encode_vision(ctemp1)
|
302 |
+
uim = None
|
303 |
+
if scale != 1.0:
|
304 |
+
dummy = torch.zeros_like(ctemp1)
|
305 |
+
uim = net.clip_encode_vision(dummy)
|
306 |
+
|
307 |
+
n = 768
|
308 |
+
shape = [n_samples, n]
|
309 |
+
zt, _ = sampler.sample(
|
310 |
+
steps=ddim_steps,
|
311 |
+
shape=shape,
|
312 |
+
conditioning=cim,
|
313 |
+
unconditional_guidance_scale=scale,
|
314 |
+
unconditional_conditioning=uim,
|
315 |
+
xtype='text', ctype='vision',
|
316 |
+
eta=ddim_eta,
|
317 |
+
verbose=False,)
|
318 |
+
ztn = net.optimus_encode([ctx_n])
|
319 |
+
ztp = net.optimus_encode([ctx_p])
|
320 |
+
|
321 |
+
ztn_norm = ztn / ztn.norm(dim=1)
|
322 |
+
zt_proj_mag = torch.matmul(zt, ztn_norm[0])
|
323 |
+
zt_perp = zt - zt_proj_mag[:, None] * ztn_norm
|
324 |
+
zt_newd = zt_perp + ztp
|
325 |
+
ctx_new = net.optimus_decode(zt_newd, temperature=prompt_temperature)
|
326 |
+
|
327 |
+
ctx_new = net.clip_encode_text(ctx_new)
|
328 |
+
ctx_p = net.clip_encode_text([ctx_p])
|
329 |
+
ctx_new = torch.cat([ctx_new, ctx_p.repeat(n_samples, 1, 1)], dim=1)
|
330 |
+
utx_new = net.clip_encode_text(n_samples * [""])
|
331 |
+
utx_new = torch.cat([utx_new, utx_new], dim=1)
|
332 |
+
|
333 |
+
cim_loc = cim[:, 1: ]
|
334 |
+
cim_loc_new = self.find_low_rank(cim_loc, demean=True, q=10)
|
335 |
+
cim_new = cim_loc_new
|
336 |
+
uim_new = uim[:, 1:]
|
337 |
+
|
338 |
+
h, w = [512, 512]
|
339 |
+
shape = [n_samples, 4, h//8, w//8]
|
340 |
+
z, _ = sampler.sample_dc(
|
341 |
+
steps=ddim_steps,
|
342 |
+
shape=shape,
|
343 |
+
first_conditioning=[uim_new, cim_new],
|
344 |
+
second_conditioning=[utx_new, ctx_new],
|
345 |
+
unconditional_guidance_scale=scale,
|
346 |
+
xtype='image',
|
347 |
+
first_ctype='vision',
|
348 |
+
second_ctype='prompt',
|
349 |
+
eta=ddim_eta,
|
350 |
+
verbose=False,
|
351 |
+
mixed_ratio=0.33, )
|
352 |
+
|
353 |
+
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
|
354 |
+
return x
|
355 |
+
|
356 |
+
vd_inference = vd_inference('official')
|
357 |
+
|
358 |
+
def main(mode,
|
359 |
+
image=None,
|
360 |
+
prompt=None,
|
361 |
+
nprompt=None,
|
362 |
+
pprompt=None,
|
363 |
+
color_adj=None,
|
364 |
+
disentanglement_level=None,
|
365 |
+
dual_guided_mixing=None,
|
366 |
+
seed=0,):
|
367 |
+
|
368 |
+
if seed<0:
|
369 |
+
seed = 0
|
370 |
+
np.random.seed(seed)
|
371 |
+
torch.manual_seed(seed+100)
|
372 |
+
|
373 |
+
if mode == 'Text-to-Image':
|
374 |
+
if (prompt is None) or (prompt == ""):
|
375 |
+
return None, None
|
376 |
+
with torch.no_grad():
|
377 |
+
rv = vd_inference.inference(
|
378 |
+
xtype = 'image',
|
379 |
+
cin = prompt,
|
380 |
+
ctype = 'prompt', )
|
381 |
+
return rv, None
|
382 |
+
elif mode == 'Image-Variation':
|
383 |
+
if image is None:
|
384 |
+
return None, None
|
385 |
+
with torch.no_grad():
|
386 |
+
rv = vd_inference.inference(
|
387 |
+
xtype = 'image',
|
388 |
+
cin = image,
|
389 |
+
ctype = 'vision',
|
390 |
+
color_adj = color_adj,)
|
391 |
+
return rv, None
|
392 |
+
elif mode == 'Image-to-Text':
|
393 |
+
if image is None:
|
394 |
+
return None, None
|
395 |
+
with torch.no_grad():
|
396 |
+
rv = vd_inference.inference(
|
397 |
+
xtype = 'text',
|
398 |
+
cin = image,
|
399 |
+
ctype = 'vision',)
|
400 |
+
return None, '\n'.join(rv)
|
401 |
+
elif mode == 'Text-Variation':
|
402 |
+
if prompt is None:
|
403 |
+
return None, None
|
404 |
+
with torch.no_grad():
|
405 |
+
rv = vd_inference.inference(
|
406 |
+
xtype = 'text',
|
407 |
+
cin = prompt,
|
408 |
+
ctype = 'prompt',)
|
409 |
+
return None, '\n'.join(rv)
|
410 |
+
elif mode == 'Disentanglement':
|
411 |
+
if image is None:
|
412 |
+
return None, None
|
413 |
+
with torch.no_grad():
|
414 |
+
rv = vd_inference.application_disensemble(
|
415 |
+
cin = image,
|
416 |
+
level = disentanglement_level,
|
417 |
+
color_adj = color_adj,)
|
418 |
+
return rv, None
|
419 |
+
elif mode == 'Dual-Guided':
|
420 |
+
if (image is None) or (prompt is None) or (prompt==""):
|
421 |
+
return None, None
|
422 |
+
with torch.no_grad():
|
423 |
+
rv = vd_inference.application_dualguided(
|
424 |
+
cim = image,
|
425 |
+
ctx = prompt,
|
426 |
+
mixing = dual_guided_mixing,
|
427 |
+
color_adj = color_adj,)
|
428 |
+
return rv, None
|
429 |
+
elif mode == 'Latent-I2T2I':
|
430 |
+
if (image is None) or (nprompt is None) or (nprompt=="") \
|
431 |
+
or (pprompt is None) or (pprompt==""):
|
432 |
+
return None, None
|
433 |
+
with torch.no_grad():
|
434 |
+
rv = vd_inference.application_i2t2i(
|
435 |
+
cim = image,
|
436 |
+
ctx_n = nprompt,
|
437 |
+
ctx_p = pprompt,
|
438 |
+
color_adj = color_adj,)
|
439 |
+
return rv, None
|
440 |
+
else:
|
441 |
+
assert False, "No such mode!"
|
442 |
+
|
443 |
+
def get_instruction(mode):
|
444 |
+
t2i_instruction = ["Generate image from text prompt."]
|
445 |
+
i2i_instruction = [
|
446 |
+
"Generate image conditioned on reference image.",
|
447 |
+
"Color Calibration provide an opinion to adjust image color according to reference image.", ]
|
448 |
+
i2t_instruction = ["Generate text from reference image."]
|
449 |
+
t2t_instruction = ["Generate text from reference text prompt. (Model insufficiently trained, thus results are still experimental)"]
|
450 |
+
dis_instruction = [
|
451 |
+
"Generate a variation of reference image that disentangled for semantic or style.",
|
452 |
+
"Color Calibration provide an opinion to adjust image color according to reference image.",
|
453 |
+
"Disentanglement level controls the level of focus towards semantic (-2, -1) or style (1 2). Level 0 serves as Image-Variation.", ]
|
454 |
+
dug_instruction = [
|
455 |
+
"Generate image from dual guidance of reference image and text prompt.",
|
456 |
+
"Color Calibration provide an opinion to adjust image color according to reference image.",
|
457 |
+
"Guidance Mixing provides linear balances between image and text context. (0 towards image, 1 towards text)", ]
|
458 |
+
iti_instruction = [
|
459 |
+
"Generate image variations via image-to-text, text-latent-editing, and then text-to-image. (Still under exploration)",
|
460 |
+
"Color Calibration provide an opinion to adjust image color according to reference image.",
|
461 |
+
"Input prompt that will be substract from text/text latent code.",
|
462 |
+
"Input prompt that will be added to text/text latent code.", ]
|
463 |
+
|
464 |
+
if mode == "Text-to-Image":
|
465 |
+
return '\n'.join(t2i_instruction)
|
466 |
+
elif mode == "Image-Variation":
|
467 |
+
return '\n'.join(i2i_instruction)
|
468 |
+
elif mode == "Image-to-Text":
|
469 |
+
return '\n'.join(i2t_instruction)
|
470 |
+
elif mode == "Text-Variation":
|
471 |
+
return '\n'.join(t2t_instruction)
|
472 |
+
elif mode == "Disentanglement":
|
473 |
+
return '\n'.join(dis_instruction)
|
474 |
+
elif mode == "Dual-Guided":
|
475 |
+
return '\n'.join(dug_instruction)
|
476 |
+
elif mode == "Latent-I2T2I":
|
477 |
+
return '\n'.join(iti_instruction)
|
478 |
+
|
479 |
+
#############
|
480 |
+
# Interface #
|
481 |
+
#############
|
482 |
+
|
483 |
+
if True:
|
484 |
+
img_output = gr.Gallery(label="Image Result").style(grid=n_sample_image)
|
485 |
+
txt_output = gr.Textbox(lines=4, label='Text Result', visible=False)
|
486 |
+
|
487 |
+
with gr.Blocks() as demo:
|
488 |
+
gr.HTML(
|
489 |
+
"""
|
490 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
491 |
+
<h1 style="font-weight: 900; font-size: 3rem;">
|
492 |
+
Versatile Diffusion
|
493 |
+
</h1>
|
494 |
+
<br>
|
495 |
+
<h2 style="font-weight: 450; font-size: 1rem;">
|
496 |
+
We built <b>Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework</b>, as a step towards <b>Universal Generative AI</b>.
|
497 |
+
VD can natively support image-to-text, image-variation, text-to-image, and text-variation,
|
498 |
+
and can be further extended to other applications such as
|
499 |
+
semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more.
|
500 |
+
Future versions will support more modalities such as speech, music, video and 3D.
|
501 |
+
</h2>
|
502 |
+
<br>
|
503 |
+
<h3>Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang,
|
504 |
+
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a>
|
505 |
+
[<a href="https://arxiv.org/abs/2211.08332" style="color:blue;">arXiv</a>]
|
506 |
+
[<a href="https://github.com/SHI-Labs/Versatile-Diffusion" style="color:blue;">GitHub</a>]
|
507 |
+
</h3>
|
508 |
+
</div>
|
509 |
+
""")
|
510 |
+
mode_input = gr.Radio([
|
511 |
+
"Text-to-Image", "Image-Variation", "Image-to-Text", "Text-Variation",
|
512 |
+
"Disentanglement", "Dual-Guided", "Latent-I2T2I"], value='Text-to-Image', label="VD Flows and Applications")
|
513 |
+
|
514 |
+
instruction = gr.Textbox(get_instruction("Text-to-Image"), label='Info')
|
515 |
+
|
516 |
+
with gr.Row():
|
517 |
+
with gr.Column():
|
518 |
+
img_input = gr.Image(label='Image Input', visible=False)
|
519 |
+
txt_input = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
|
520 |
+
ntxt_input = gr.Textbox(label='Remove Prompt', visible=False)
|
521 |
+
ptxt_input = gr.Textbox(label='Add Prompt', visible=False)
|
522 |
+
coladj_input = gr.Radio(["None", "Simple"], value='Simple', label="Color Calibration", visible=False)
|
523 |
+
dislvl_input = gr.Slider(-2, 2, value=0, step=1, label="Disentanglement level", visible=False)
|
524 |
+
dguide_input = gr.Slider(0, 1, value=0.5, step=0.01, label="Guidance Mixing", visible=False)
|
525 |
+
seed_input = gr.Number(100, label="Seed", precision=0)
|
526 |
+
|
527 |
+
btn = gr.Button("Run")
|
528 |
+
btn.click(
|
529 |
+
main,
|
530 |
+
inputs=[
|
531 |
+
mode_input,
|
532 |
+
img_input,
|
533 |
+
txt_input,
|
534 |
+
ntxt_input,
|
535 |
+
ptxt_input,
|
536 |
+
coladj_input,
|
537 |
+
dislvl_input,
|
538 |
+
dguide_input,
|
539 |
+
seed_input, ],
|
540 |
+
outputs=[img_output, txt_output])
|
541 |
+
|
542 |
+
with gr.Column():
|
543 |
+
img_output.render()
|
544 |
+
txt_output.render()
|
545 |
+
|
546 |
+
example_mode = [
|
547 |
+
"Text-to-Image",
|
548 |
+
"Image-Variation",
|
549 |
+
"Image-to-Text",
|
550 |
+
"Text-Variation",
|
551 |
+
"Disentanglement",
|
552 |
+
"Dual-Guided",
|
553 |
+
"Latent-I2T2I"]
|
554 |
+
|
555 |
+
def get_example(mode):
|
556 |
+
if mode == 'Text-to-Image':
|
557 |
+
case = [
|
558 |
+
['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ', 23],
|
559 |
+
['a beautiful grand nebula in the universe', 24],
|
560 |
+
['heavy arms gundam penguin mech', 25],
|
561 |
+
]
|
562 |
+
elif mode == "Image-Variation":
|
563 |
+
case = [
|
564 |
+
['assets/space.jpg', 'None', 26],
|
565 |
+
['assets/train.jpg', 'Simple', 27],
|
566 |
+
]
|
567 |
+
elif mode == "Image-to-Text":
|
568 |
+
case = [
|
569 |
+
['assets/boy_and_girl.jpg' , 28],
|
570 |
+
['assets/house_by_lake.jpg', 29],
|
571 |
+
]
|
572 |
+
elif mode == "Text-Variation":
|
573 |
+
case = [
|
574 |
+
['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ' , 32],
|
575 |
+
['a beautiful grand nebula in the universe' , 33],
|
576 |
+
['heavy arms gundam penguin mech', 34],
|
577 |
+
]
|
578 |
+
elif mode == "Disentanglement":
|
579 |
+
case = [
|
580 |
+
['assets/vermeer.jpg', 'Simple', -2, 30],
|
581 |
+
['assets/matisse.jpg', 'Simple', 2, 31],
|
582 |
+
]
|
583 |
+
elif mode == "Dual-Guided":
|
584 |
+
case = [
|
585 |
+
['assets/benz.jpg', 'cyberpunk 2077', 'Simple', 0.75, 22],
|
586 |
+
['assets/vermeer.jpg', 'a girl with a diamond necklace', 'Simple', 0.66, 21],
|
587 |
+
]
|
588 |
+
elif mode == "Latent-I2T2I":
|
589 |
+
case = [
|
590 |
+
['assets/ghibli.jpg', 'white house', 'tall castle', 'Simple', 20],
|
591 |
+
['assets/matisse.jpg', 'fruits and bottles on the table', 'flowers on the table', 'Simple', 21],
|
592 |
+
]
|
593 |
+
else:
|
594 |
+
raise ValueError
|
595 |
+
case = [[mode] + casei for casei in case]
|
596 |
+
return case
|
597 |
+
|
598 |
+
def get_example_iof(mode):
|
599 |
+
if mode == 'Text-to-Image':
|
600 |
+
inps = [txt_input, seed_input]
|
601 |
+
oups = [img_output]
|
602 |
+
fn = lambda m, x, y: \
|
603 |
+
main(mode=m, prompt=x, seed=y)[0]
|
604 |
+
elif mode == "Image-Variation":
|
605 |
+
inps = [img_input, coladj_input, seed_input]
|
606 |
+
oups = [img_output]
|
607 |
+
fn = lambda m, x, y, z: \
|
608 |
+
main(mode=m, image=x, color_adj=y, seed=z)[0]
|
609 |
+
elif mode == "Image-to-Text":
|
610 |
+
inps = [img_input, seed_input]
|
611 |
+
oups = [txt_output]
|
612 |
+
fn = lambda m, x, y: \
|
613 |
+
main(mode=m, image=x, seed=y)[1]
|
614 |
+
elif mode == "Text-Variation":
|
615 |
+
inps = [txt_input, seed_input]
|
616 |
+
oups = [txt_output]
|
617 |
+
fn = lambda m, x, y: \
|
618 |
+
main(mode=m, prompt=x, seed=y)[1]
|
619 |
+
elif mode == "Disentanglement":
|
620 |
+
inps = [img_input, coladj_input, dislvl_input, seed_input]
|
621 |
+
oups = [img_output]
|
622 |
+
fn = lambda m, x, y, z, w: \
|
623 |
+
main(mode=m, image=x, color_adj=y, disentanglement_level=z, seed=w)[0]
|
624 |
+
elif mode == "Dual-Guided":
|
625 |
+
inps = [img_input, txt_input, coladj_input, dguide_input, seed_input]
|
626 |
+
oups = [img_output]
|
627 |
+
fn = lambda m, x, y, z, w, u: \
|
628 |
+
main(mode=m, image=x, prompt=y, color_adj=z, dual_guided_mixing=w, seed=u)[0]
|
629 |
+
elif mode == "Latent-I2T2I":
|
630 |
+
inps = [img_input, ntxt_input, ptxt_input, coladj_input, seed_input]
|
631 |
+
oups = [img_output]
|
632 |
+
fn = lambda m, x, y, z, w, u: \
|
633 |
+
main(mode=m, image=x, nprompt=y, pprompt=z, color_adj=w, seed=u)[0]
|
634 |
+
else:
|
635 |
+
raise ValueError
|
636 |
+
return [mode_input]+inps, oups, fn
|
637 |
+
|
638 |
+
with gr.Row():
|
639 |
+
for emode in example_mode[0:4]:
|
640 |
+
with gr.Column():
|
641 |
+
gr.Examples(
|
642 |
+
label=emode+' Examples',
|
643 |
+
examples=get_example(emode),
|
644 |
+
inputs=get_example_iof(emode)[0],
|
645 |
+
outputs=get_example_iof(emode)[1],
|
646 |
+
fn = get_example_iof(emode)[2],
|
647 |
+
cache_examples=cache_examples),
|
648 |
+
with gr.Row():
|
649 |
+
for emode in example_mode[4:7]:
|
650 |
+
with gr.Column():
|
651 |
+
gr.Examples(
|
652 |
+
label=emode+' Examples',
|
653 |
+
examples=get_example(emode),
|
654 |
+
inputs=get_example_iof(emode)[0],
|
655 |
+
outputs=get_example_iof(emode)[1],
|
656 |
+
fn = get_example_iof(emode)[2],
|
657 |
+
cache_examples=cache_examples),
|
658 |
+
|
659 |
+
mode_input.change(
|
660 |
+
fn=lambda x: gr.update(value=get_instruction(x)),
|
661 |
+
inputs=mode_input,
|
662 |
+
outputs=instruction,)
|
663 |
+
|
664 |
+
mode_input.change(
|
665 |
+
fn=lambda x: gr.update(visible=(x not in ['Text-to-Image', 'Text-Variation'])),
|
666 |
+
inputs=mode_input,
|
667 |
+
outputs=img_input,)
|
668 |
+
|
669 |
+
mode_input.change(
|
670 |
+
fn=lambda x: gr.update(visible=(x in ['Text-to-Image', 'Text-Variation', 'Dual-Guided'])),
|
671 |
+
inputs=mode_input,
|
672 |
+
outputs=txt_input,)
|
673 |
+
|
674 |
+
mode_input.change(
|
675 |
+
fn=lambda x: gr.update(visible=(x in ['Latent-I2T2I'])),
|
676 |
+
inputs=mode_input,
|
677 |
+
outputs=ntxt_input,)
|
678 |
+
mode_input.change(
|
679 |
+
fn=lambda x: gr.update(visible=(x in ['Latent-I2T2I'])),
|
680 |
+
inputs=mode_input,
|
681 |
+
outputs=ptxt_input,)
|
682 |
+
|
683 |
+
mode_input.change(
|
684 |
+
fn=lambda x: gr.update(visible=(x not in ['Text-to-Image', 'Image-to-Text', 'Text-Variation'])),
|
685 |
+
inputs=mode_input,
|
686 |
+
outputs=coladj_input,)
|
687 |
+
|
688 |
+
mode_input.change(
|
689 |
+
fn=lambda x: gr.update(visible=(x=='Disentanglement')),
|
690 |
+
inputs=mode_input,
|
691 |
+
outputs=dislvl_input,)
|
692 |
+
|
693 |
+
mode_input.change(
|
694 |
+
fn=lambda x: gr.update(visible=(x=='Dual-Guided')),
|
695 |
+
inputs=mode_input,
|
696 |
+
outputs=dguide_input,)
|
697 |
+
|
698 |
+
mode_input.change(
|
699 |
+
fn=lambda x: gr.update(visible=(x not in ['Image-to-Text', 'Text-Variation'])),
|
700 |
+
inputs=mode_input,
|
701 |
+
outputs=img_output,)
|
702 |
+
mode_input.change(
|
703 |
+
fn=lambda x: gr.update(visible=(x in ['Image-to-Text', 'Text-Variation'])),
|
704 |
+
inputs=mode_input,
|
705 |
+
outputs=txt_output,)
|
706 |
+
|
707 |
+
gr.HTML(
|
708 |
+
"""
|
709 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
710 |
+
<h3>
|
711 |
+
<b>Caution</b>:
|
712 |
+
We would like the raise the awareness of users of this demo of its potential issues and concerns.
|
713 |
+
Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope.
|
714 |
+
In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data.
|
715 |
+
So far, we keep all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future.
|
716 |
+
We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
717 |
+
</h3>
|
718 |
+
<br>
|
719 |
+
<h3>
|
720 |
+
<b>Biases and content acknowledgement</b>:
|
721 |
+
Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence.
|
722 |
+
VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contained unintended exceptions as we removed illegal content.
|
723 |
+
VD in this demo is meant only for research purposes.
|
724 |
+
</h3>
|
725 |
+
</div>
|
726 |
+
""")
|
727 |
+
|
728 |
+
# demo.launch(share=True)
|
729 |
+
demo.launch(debug=True)
|
assets/benz.jpg
ADDED
![]() |
Git LFS Details
|
assets/boy_and_girl.jpg
ADDED
![]() |
Git LFS Details
|
assets/church.jpg
ADDED
![]() |
Git LFS Details
|
assets/firework.jpg
ADDED
![]() |
Git LFS Details
|
assets/ghibli.jpg
ADDED
![]() |
Git LFS Details
|
assets/horse.png
ADDED
![]() |
Git LFS Details
|
assets/house_by_lake.jpg
ADDED
![]() |
Git LFS Details
|
assets/matisse.jpg
ADDED
![]() |
Git LFS Details
|
assets/night_light.jpg
ADDED
![]() |
Git LFS Details
|
assets/penguin.png
ADDED
![]() |
Git LFS Details
|
assets/san_diego.jpg
ADDED
![]() |
Git LFS Details
|
assets/scream.jpg
ADDED
![]() |
Git LFS Details
|
assets/space.jpg
ADDED
![]() |
Git LFS Details
|
assets/tiger.jpg
ADDED
![]() |
Git LFS Details
|
assets/train.jpg
ADDED
![]() |
Git LFS Details
|
assets/vermeer.jpg
ADDED
![]() |
Git LFS Details
|
configs/model/clip.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
clip:
|
3 |
+
symbol: clip
|
4 |
+
args: {}
|
5 |
+
|
6 |
+
clip_frozen:
|
7 |
+
super_cfg: clip
|
8 |
+
type: clip_frozen
|
9 |
+
args: {}
|
10 |
+
|
11 |
+
clip_text_frozen:
|
12 |
+
super_cfg: clip
|
13 |
+
type: clip_text_frozen
|
14 |
+
args: {}
|
15 |
+
|
16 |
+
clip_vision_frozen:
|
17 |
+
super_cfg: clip
|
18 |
+
type: clip_vision_frozen
|
19 |
+
args: {}
|
20 |
+
|
21 |
+
############################
|
22 |
+
# clip with focused encode #
|
23 |
+
############################
|
24 |
+
|
25 |
+
clip_frozen_encode_text:
|
26 |
+
super_cfg: clip
|
27 |
+
type: clip_frozen
|
28 |
+
args:
|
29 |
+
encode_type : encode_text
|
30 |
+
|
31 |
+
clip_frozen_encode_vision:
|
32 |
+
super_cfg: clip
|
33 |
+
type: clip_frozen
|
34 |
+
args:
|
35 |
+
encode_type : encode_vision
|
36 |
+
|
37 |
+
clip_frozen_encode_text_noproj:
|
38 |
+
super_cfg: clip
|
39 |
+
type: clip_frozen
|
40 |
+
args:
|
41 |
+
encode_type : encode_text_noproj
|
42 |
+
|
43 |
+
#####################################
|
44 |
+
# clip vision forzen justin version #
|
45 |
+
#####################################
|
46 |
+
|
47 |
+
clip_vision_frozen_justin:
|
48 |
+
super_cfg: clip
|
49 |
+
type: clip_vision_frozen_justin
|
50 |
+
args: {}
|
configs/model/openai_unet.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai_unet_sd:
|
2 |
+
type: openai_unet
|
3 |
+
args:
|
4 |
+
image_size: null # no use
|
5 |
+
in_channels: 4
|
6 |
+
out_channels: 4
|
7 |
+
model_channels: 320
|
8 |
+
attention_resolutions: [ 4, 2, 1 ]
|
9 |
+
num_res_blocks: [ 2, 2, 2, 2 ]
|
10 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
11 |
+
# disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
|
12 |
+
num_heads: 8
|
13 |
+
use_spatial_transformer: True
|
14 |
+
transformer_depth: 1
|
15 |
+
context_dim: 768
|
16 |
+
use_checkpoint: True
|
17 |
+
legacy: False
|
18 |
+
|
19 |
+
openai_unet_dual_context:
|
20 |
+
super_cfg: openai_unet_sd
|
21 |
+
type: openai_unet_dual_context
|
22 |
+
|
23 |
+
########################
|
24 |
+
# Code cleaned version #
|
25 |
+
########################
|
26 |
+
|
27 |
+
openai_unet_2d:
|
28 |
+
type: openai_unet_2d
|
29 |
+
args:
|
30 |
+
input_channels: 4
|
31 |
+
model_channels: 320
|
32 |
+
output_channels: 4
|
33 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
34 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
35 |
+
with_attn: [true, true, true, false]
|
36 |
+
num_heads: 8
|
37 |
+
context_dim: 768
|
38 |
+
use_checkpoint: True
|
39 |
+
|
40 |
+
openai_unet_0d:
|
41 |
+
type: openai_unet_0d
|
42 |
+
args:
|
43 |
+
input_channels: 768
|
44 |
+
model_channels: 320
|
45 |
+
output_channels: 768
|
46 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
47 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
48 |
+
with_attn: [true, true, true, false]
|
49 |
+
num_heads: 8
|
50 |
+
context_dim: 768
|
51 |
+
use_checkpoint: True
|
52 |
+
|
53 |
+
openai_unet_0dmd:
|
54 |
+
type: openai_unet_0dmd
|
55 |
+
args:
|
56 |
+
input_channels: 768
|
57 |
+
model_channels: 320
|
58 |
+
output_channels: 768
|
59 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
60 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
61 |
+
second_dim: [ 4, 4, 4, 4 ]
|
62 |
+
with_attn: [true, true, true, false]
|
63 |
+
num_heads: 8
|
64 |
+
context_dim: 768
|
65 |
+
use_checkpoint: True
|
66 |
+
|
67 |
+
openai_unet_vd:
|
68 |
+
type: openai_unet_vd
|
69 |
+
args:
|
70 |
+
unet_image_cfg: MODEL(openai_unet_2d)
|
71 |
+
unet_test_cfg: MODEL(openai_unet_0dmd)
|
72 |
+
|
configs/model/optimus.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
optimus:
|
3 |
+
symbol: optimus
|
4 |
+
find_unused_parameters: false
|
5 |
+
args: {}
|
6 |
+
|
7 |
+
optimus_bert_encoder:
|
8 |
+
super_cfg: optimus
|
9 |
+
type: optimus_bert_connector
|
10 |
+
# pth: pretrained/optimus_bert_encoder.pth
|
11 |
+
args:
|
12 |
+
config:
|
13 |
+
architectures:
|
14 |
+
- BertForMaskedLM
|
15 |
+
attention_probs_dropout_prob: 0.1
|
16 |
+
finetuning_task: null
|
17 |
+
hidden_act: gelu
|
18 |
+
hidden_dropout_prob: 0.1
|
19 |
+
hidden_size: 768
|
20 |
+
initializer_range: 0.02
|
21 |
+
intermediate_size: 3072
|
22 |
+
layer_norm_eps: 1.e-12
|
23 |
+
max_position_embeddings: 512
|
24 |
+
num_attention_heads: 12
|
25 |
+
num_hidden_layers: 12
|
26 |
+
num_labels: 2
|
27 |
+
output_attentions: false
|
28 |
+
output_hidden_states: false
|
29 |
+
pruned_heads: {}
|
30 |
+
torchscript: false
|
31 |
+
type_vocab_size: 2
|
32 |
+
vocab_size: 28996
|
33 |
+
latent_size: 768
|
34 |
+
|
35 |
+
optimus_bert_tokenizer:
|
36 |
+
super_cfg: optimus
|
37 |
+
type: optimus_bert_tokenizer
|
38 |
+
args:
|
39 |
+
do_lower_case: false
|
40 |
+
max_len: 512
|
41 |
+
vocab_file: lib/model_zoo/optimus_models/vocab/bert-base-cased-vocab.txt
|
42 |
+
|
43 |
+
optimus_gpt2_decoder:
|
44 |
+
super_cfg: optimus
|
45 |
+
type: optimus_gpt2_connector
|
46 |
+
# pth: pretrained/optimus_gpt2_decoder.pth
|
47 |
+
args:
|
48 |
+
config:
|
49 |
+
architectures:
|
50 |
+
- GPT2LMHeadModel
|
51 |
+
attn_pdrop: 0.1
|
52 |
+
embd_pdrop: 0.1
|
53 |
+
finetuning_task: null
|
54 |
+
hidden_size: 768
|
55 |
+
initializer_range: 0.02
|
56 |
+
latent_size: 768
|
57 |
+
layer_norm_epsilon: 1.e-05
|
58 |
+
max_position_embeddings: 1024
|
59 |
+
n_ctx: 1024
|
60 |
+
n_embd: 768
|
61 |
+
n_head: 12
|
62 |
+
n_layer: 12
|
63 |
+
n_positions: 1024
|
64 |
+
num_attention_heads: 12
|
65 |
+
num_hidden_layers: 12
|
66 |
+
num_labels: 1
|
67 |
+
output_attentions: false
|
68 |
+
output_hidden_states: false
|
69 |
+
pretrained_config_archive_map:
|
70 |
+
gpt2 : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json
|
71 |
+
gpt2-medium : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json
|
72 |
+
gpt2-large : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json
|
73 |
+
pruned_heads: {}
|
74 |
+
resid_pdrop: 0.1
|
75 |
+
summary_activation: null
|
76 |
+
summary_first_dropout: 0.1
|
77 |
+
summary_proj_to_labels: true
|
78 |
+
summary_type: cls_index
|
79 |
+
summary_use_proj: true
|
80 |
+
torchscript: false
|
81 |
+
vocab_size: 50260
|
82 |
+
|
83 |
+
optimus_gpt2_tokenizer:
|
84 |
+
super_cfg: optimus
|
85 |
+
type: optimus_gpt2_tokenizer
|
86 |
+
args:
|
87 |
+
do_lower_case: false
|
88 |
+
max_len: 1024
|
89 |
+
vocab_file: lib/model_zoo/optimus_models/vocab/gpt2-vocab.json
|
90 |
+
merges_file: lib/model_zoo/optimus_models/vocab/gpt2-merges.txt
|
91 |
+
|
92 |
+
optimus_vae:
|
93 |
+
super_cfg: optimus
|
94 |
+
type: optimus_vae
|
95 |
+
pth: pretrained/optimus-vae.pth
|
96 |
+
args:
|
97 |
+
encoder: MODEL(optimus_bert_encoder)
|
98 |
+
decoder: MODEL(optimus_gpt2_decoder)
|
99 |
+
tokenizer_encoder: MODEL(optimus_bert_tokenizer)
|
100 |
+
tokenizer_decoder: MODEL(optimus_gpt2_tokenizer)
|
101 |
+
args:
|
102 |
+
latent_size: 768
|
configs/model/sd.yaml
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sd_base:
|
2 |
+
symbol: sd
|
3 |
+
find_unused_parameters: true
|
4 |
+
|
5 |
+
sd_autoencoder:
|
6 |
+
type: autoencoderkl
|
7 |
+
args:
|
8 |
+
embed_dim: 4
|
9 |
+
monitor: val/rec_loss
|
10 |
+
ddconfig:
|
11 |
+
double_z: true
|
12 |
+
z_channels: 4
|
13 |
+
resolution: 256
|
14 |
+
in_channels: 3
|
15 |
+
out_ch: 3
|
16 |
+
ch: 128
|
17 |
+
ch_mult: [1, 2, 4, 4]
|
18 |
+
num_res_blocks: 2
|
19 |
+
attn_resolutions: []
|
20 |
+
dropout: 0.0
|
21 |
+
lossconfig:
|
22 |
+
target: torch.nn.Identity
|
23 |
+
pth: pretrained/kl-f8.pth
|
24 |
+
|
25 |
+
sd_t2i:
|
26 |
+
super_cfg: sd_base
|
27 |
+
type: sd_t2i
|
28 |
+
args:
|
29 |
+
first_stage_config: MODEL(sd_autoencoder)
|
30 |
+
cond_stage_config: MODEL(clip_text_frozen)
|
31 |
+
unet_config: MODEL(openai_unet_sd)
|
32 |
+
beta_linear_start: 0.00085
|
33 |
+
beta_linear_end: 0.012
|
34 |
+
num_timesteps_cond: 1
|
35 |
+
timesteps: 1000
|
36 |
+
scale_factor: 0.18215
|
37 |
+
use_ema: true
|
38 |
+
|
39 |
+
sd_t2i_noema:
|
40 |
+
super_cfg: sd
|
41 |
+
args:
|
42 |
+
use_ema: false
|
43 |
+
|
44 |
+
#####################
|
45 |
+
# sd with full clip #
|
46 |
+
#####################
|
47 |
+
|
48 |
+
sd_t2i_fullclip_backward_compatible:
|
49 |
+
super_cfg: sd_t2i
|
50 |
+
args:
|
51 |
+
cond_stage_config: MODEL(clip_frozen_encode_text_noproj)
|
52 |
+
|
53 |
+
sd_t2i_fullclip_backward_compatible_noema:
|
54 |
+
super_cfg: sd_t2i_noema
|
55 |
+
args:
|
56 |
+
cond_stage_config: MODEL(clip_frozen_encode_text_noproj)
|
57 |
+
|
58 |
+
sd_t2i_fullclip:
|
59 |
+
super_cfg: sd_t2i
|
60 |
+
args:
|
61 |
+
cond_stage_config: MODEL(clip_frozen_encode_text)
|
62 |
+
|
63 |
+
sd_variation:
|
64 |
+
super_cfg: sd_t2i
|
65 |
+
type: sd_variation
|
66 |
+
args:
|
67 |
+
cond_stage_config: MODEL(clip_vision_frozen_justin)
|
68 |
+
|
configs/model/vd.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vd_base:
|
2 |
+
# symbol: vd
|
3 |
+
# find_unused_parameters: true
|
4 |
+
|
5 |
+
############
|
6 |
+
# vd basic #
|
7 |
+
############
|
8 |
+
|
9 |
+
vd_basic:
|
10 |
+
super_cfg: sd_t2i
|
11 |
+
type: vd_basic
|
12 |
+
symbol: vd
|
13 |
+
find_unused_parameters: true
|
14 |
+
args:
|
15 |
+
cond_stage_config: MODEL(clip_frozen_encode_vision)
|
16 |
+
|
17 |
+
vd_basic_noema:
|
18 |
+
super_cfg: vd_basic
|
19 |
+
args:
|
20 |
+
use_ema: false
|
21 |
+
|
22 |
+
###################
|
23 |
+
# vd dual-context #
|
24 |
+
###################
|
25 |
+
|
26 |
+
vd_dc:
|
27 |
+
super_cfg: sd_t2i_fullclip
|
28 |
+
type: vd_dc
|
29 |
+
symbol: vd
|
30 |
+
find_unused_parameters: true
|
31 |
+
args:
|
32 |
+
unet_config: MODEL(openai_unet_dual_context)
|
33 |
+
|
34 |
+
vd_dc_noema:
|
35 |
+
super_cfg: vd_dc
|
36 |
+
args:
|
37 |
+
use_ema: false
|
38 |
+
|
39 |
+
######
|
40 |
+
# vd #
|
41 |
+
######
|
42 |
+
|
43 |
+
vd:
|
44 |
+
type: vd
|
45 |
+
symbol: vd
|
46 |
+
find_unused_parameters: true
|
47 |
+
args:
|
48 |
+
autokl_cfg: MODEL(sd_autoencoder)
|
49 |
+
optimus_cfg: MODEL(optimus_vae)
|
50 |
+
clip_cfg: MODEL(clip_frozen)
|
51 |
+
unet_config: MODEL(openai_unet_vd)
|
52 |
+
beta_linear_start: 0.00085
|
53 |
+
beta_linear_end: 0.012
|
54 |
+
timesteps: 1000
|
55 |
+
scale_factor: 0.18215
|
56 |
+
use_ema: true
|
57 |
+
|
58 |
+
vd_noema:
|
59 |
+
super_cfg: vd
|
60 |
+
args:
|
61 |
+
use_ema: false
|
lib/__init__.py
ADDED
File without changes
|
lib/cfg_helper.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import shutil
|
4 |
+
import copy
|
5 |
+
import time
|
6 |
+
import pprint
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import matplotlib
|
10 |
+
import argparse
|
11 |
+
import json
|
12 |
+
import yaml
|
13 |
+
from easydict import EasyDict as edict
|
14 |
+
|
15 |
+
from .model_zoo import get_model
|
16 |
+
|
17 |
+
############
|
18 |
+
# cfg_bank #
|
19 |
+
############
|
20 |
+
|
21 |
+
def cfg_solvef(cmd, root):
|
22 |
+
if not isinstance(cmd, str):
|
23 |
+
return cmd
|
24 |
+
|
25 |
+
if cmd.find('SAME')==0:
|
26 |
+
zoom = root
|
27 |
+
p = cmd[len('SAME'):].strip('()').split('.')
|
28 |
+
p = [pi.strip() for pi in p]
|
29 |
+
for pi in p:
|
30 |
+
try:
|
31 |
+
pi = int(pi)
|
32 |
+
except:
|
33 |
+
pass
|
34 |
+
|
35 |
+
try:
|
36 |
+
zoom = zoom[pi]
|
37 |
+
except:
|
38 |
+
return cmd
|
39 |
+
return cfg_solvef(zoom, root)
|
40 |
+
|
41 |
+
if cmd.find('SEARCH')==0:
|
42 |
+
zoom = root
|
43 |
+
p = cmd[len('SEARCH'):].strip('()').split('.')
|
44 |
+
p = [pi.strip() for pi in p]
|
45 |
+
find = True
|
46 |
+
# Depth first search
|
47 |
+
for pi in p:
|
48 |
+
try:
|
49 |
+
pi = int(pi)
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
|
53 |
+
try:
|
54 |
+
zoom = zoom[pi]
|
55 |
+
except:
|
56 |
+
find = False
|
57 |
+
break
|
58 |
+
|
59 |
+
if find:
|
60 |
+
return cfg_solvef(zoom, root)
|
61 |
+
else:
|
62 |
+
if isinstance(root, dict):
|
63 |
+
for ri in root:
|
64 |
+
rv = cfg_solvef(cmd, root[ri])
|
65 |
+
if rv != cmd:
|
66 |
+
return rv
|
67 |
+
if isinstance(root, list):
|
68 |
+
for ri in root:
|
69 |
+
rv = cfg_solvef(cmd, ri)
|
70 |
+
if rv != cmd:
|
71 |
+
return rv
|
72 |
+
return cmd
|
73 |
+
|
74 |
+
if cmd.find('MODEL')==0:
|
75 |
+
goto = cmd[len('MODEL'):].strip('()')
|
76 |
+
return model_cfg_bank()(goto)
|
77 |
+
|
78 |
+
if cmd.find('DATASET')==0:
|
79 |
+
goto = cmd[len('DATASET'):].strip('()')
|
80 |
+
return dataset_cfg_bank()(goto)
|
81 |
+
|
82 |
+
return cmd
|
83 |
+
|
84 |
+
def cfg_solve(cfg, cfg_root):
|
85 |
+
# The function solve cfg element such that
|
86 |
+
# all sorrogate input are settled.
|
87 |
+
# (i.e. SAME(***) )
|
88 |
+
if isinstance(cfg, list):
|
89 |
+
for i in range(len(cfg)):
|
90 |
+
if isinstance(cfg[i], (list, dict)):
|
91 |
+
cfg[i] = cfg_solve(cfg[i], cfg_root)
|
92 |
+
else:
|
93 |
+
cfg[i] = cfg_solvef(cfg[i], cfg_root)
|
94 |
+
if isinstance(cfg, dict):
|
95 |
+
for k in cfg:
|
96 |
+
if isinstance(cfg[k], (list, dict)):
|
97 |
+
cfg[k] = cfg_solve(cfg[k], cfg_root)
|
98 |
+
else:
|
99 |
+
cfg[k] = cfg_solvef(cfg[k], cfg_root)
|
100 |
+
return cfg
|
101 |
+
|
102 |
+
class model_cfg_bank(object):
|
103 |
+
def __init__(self):
|
104 |
+
self.cfg_dir = osp.join('configs', 'model')
|
105 |
+
self.cfg_bank = edict()
|
106 |
+
|
107 |
+
def __call__(self, name):
|
108 |
+
if name not in self.cfg_bank:
|
109 |
+
cfg_path = self.get_yaml_path(name)
|
110 |
+
with open(cfg_path, 'r') as f:
|
111 |
+
cfg_new = yaml.load(
|
112 |
+
f, Loader=yaml.FullLoader)
|
113 |
+
cfg_new = edict(cfg_new)
|
114 |
+
self.cfg_bank.update(cfg_new)
|
115 |
+
|
116 |
+
cfg = self.cfg_bank[name]
|
117 |
+
cfg.name = name
|
118 |
+
if 'super_cfg' not in cfg:
|
119 |
+
cfg = cfg_solve(cfg, cfg)
|
120 |
+
self.cfg_bank[name] = cfg
|
121 |
+
return copy.deepcopy(cfg)
|
122 |
+
|
123 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
124 |
+
# unlike other field,
|
125 |
+
# args will not be replaced but update.
|
126 |
+
if 'args' in cfg:
|
127 |
+
if 'args' in super_cfg:
|
128 |
+
super_cfg.args.update(cfg.args)
|
129 |
+
else:
|
130 |
+
super_cfg.args = cfg.args
|
131 |
+
cfg.pop('args')
|
132 |
+
|
133 |
+
super_cfg.update(cfg)
|
134 |
+
super_cfg.pop('super_cfg')
|
135 |
+
cfg = super_cfg
|
136 |
+
try:
|
137 |
+
delete_args = cfg.pop('delete_args')
|
138 |
+
except:
|
139 |
+
delete_args = []
|
140 |
+
|
141 |
+
for dargs in delete_args:
|
142 |
+
cfg.args.pop(dargs)
|
143 |
+
|
144 |
+
cfg = cfg_solve(cfg, cfg)
|
145 |
+
self.cfg_bank[name] = cfg
|
146 |
+
return copy.deepcopy(cfg)
|
147 |
+
|
148 |
+
def get_yaml_path(self, name):
|
149 |
+
if name.find('ldm')==0:
|
150 |
+
return osp.join(
|
151 |
+
self.cfg_dir, 'ldm.yaml')
|
152 |
+
elif name.find('comodgan')==0:
|
153 |
+
return osp.join(
|
154 |
+
self.cfg_dir, 'comodgan.yaml')
|
155 |
+
elif name.find('stylegan')==0:
|
156 |
+
return osp.join(
|
157 |
+
self.cfg_dir, 'stylegan.yaml')
|
158 |
+
elif name.find('absgan')==0:
|
159 |
+
return osp.join(
|
160 |
+
self.cfg_dir, 'absgan.yaml')
|
161 |
+
elif name.find('ashgan')==0:
|
162 |
+
return osp.join(
|
163 |
+
self.cfg_dir, 'ashgan.yaml')
|
164 |
+
elif name.find('sr3')==0:
|
165 |
+
return osp.join(
|
166 |
+
self.cfg_dir, 'sr3.yaml')
|
167 |
+
elif name.find('specdiffsr')==0:
|
168 |
+
return osp.join(
|
169 |
+
self.cfg_dir, 'specdiffsr.yaml')
|
170 |
+
elif name.find('openai_unet')==0:
|
171 |
+
return osp.join(
|
172 |
+
self.cfg_dir, 'openai_unet.yaml')
|
173 |
+
elif name.find('clip')==0:
|
174 |
+
return osp.join(
|
175 |
+
self.cfg_dir, 'clip.yaml')
|
176 |
+
elif name.find('sd')==0:
|
177 |
+
return osp.join(
|
178 |
+
self.cfg_dir, 'sd.yaml')
|
179 |
+
elif name.find('vd')==0:
|
180 |
+
return osp.join(
|
181 |
+
self.cfg_dir, 'vd.yaml')
|
182 |
+
elif name.find('optimus')==0:
|
183 |
+
return osp.join(
|
184 |
+
self.cfg_dir, 'optimus.yaml')
|
185 |
+
else:
|
186 |
+
raise ValueError
|
187 |
+
|
188 |
+
class dataset_cfg_bank(object):
|
189 |
+
def __init__(self):
|
190 |
+
self.cfg_dir = osp.join('configs', 'dataset')
|
191 |
+
self.cfg_bank = edict()
|
192 |
+
|
193 |
+
def __call__(self, name):
|
194 |
+
if name not in self.cfg_bank:
|
195 |
+
cfg_path = self.get_yaml_path(name)
|
196 |
+
with open(cfg_path, 'r') as f:
|
197 |
+
cfg_new = yaml.load(
|
198 |
+
f, Loader=yaml.FullLoader)
|
199 |
+
cfg_new = edict(cfg_new)
|
200 |
+
self.cfg_bank.update(cfg_new)
|
201 |
+
|
202 |
+
cfg = self.cfg_bank[name]
|
203 |
+
cfg.name = name
|
204 |
+
if cfg.get('super_cfg', None) is None:
|
205 |
+
cfg = cfg_solve(cfg, cfg)
|
206 |
+
self.cfg_bank[name] = cfg
|
207 |
+
return copy.deepcopy(cfg)
|
208 |
+
|
209 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
210 |
+
super_cfg.update(cfg)
|
211 |
+
cfg = super_cfg
|
212 |
+
cfg.super_cfg = None
|
213 |
+
try:
|
214 |
+
delete = cfg.pop('delete')
|
215 |
+
except:
|
216 |
+
delete = []
|
217 |
+
|
218 |
+
for dargs in delete:
|
219 |
+
cfg.pop(dargs)
|
220 |
+
|
221 |
+
cfg = cfg_solve(cfg, cfg)
|
222 |
+
self.cfg_bank[name] = cfg
|
223 |
+
return copy.deepcopy(cfg)
|
224 |
+
|
225 |
+
def get_yaml_path(self, name):
|
226 |
+
if name.find('cityscapes')==0:
|
227 |
+
return osp.join(
|
228 |
+
self.cfg_dir, 'cityscapes.yaml')
|
229 |
+
elif name.find('div2k')==0:
|
230 |
+
return osp.join(
|
231 |
+
self.cfg_dir, 'div2k.yaml')
|
232 |
+
elif name.find('gandiv2k')==0:
|
233 |
+
return osp.join(
|
234 |
+
self.cfg_dir, 'gandiv2k.yaml')
|
235 |
+
elif name.find('srbenchmark')==0:
|
236 |
+
return osp.join(
|
237 |
+
self.cfg_dir, 'srbenchmark.yaml')
|
238 |
+
elif name.find('imagedir')==0:
|
239 |
+
return osp.join(
|
240 |
+
self.cfg_dir, 'imagedir.yaml')
|
241 |
+
elif name.find('places2')==0:
|
242 |
+
return osp.join(
|
243 |
+
self.cfg_dir, 'places2.yaml')
|
244 |
+
elif name.find('ffhq')==0:
|
245 |
+
return osp.join(
|
246 |
+
self.cfg_dir, 'ffhq.yaml')
|
247 |
+
elif name.find('imcpt')==0:
|
248 |
+
return osp.join(
|
249 |
+
self.cfg_dir, 'imcpt.yaml')
|
250 |
+
elif name.find('texture')==0:
|
251 |
+
return osp.join(
|
252 |
+
self.cfg_dir, 'texture.yaml')
|
253 |
+
elif name.find('openimages')==0:
|
254 |
+
return osp.join(
|
255 |
+
self.cfg_dir, 'openimages.yaml')
|
256 |
+
elif name.find('laion2b')==0:
|
257 |
+
return osp.join(
|
258 |
+
self.cfg_dir, 'laion2b.yaml')
|
259 |
+
elif name.find('laionart')==0:
|
260 |
+
return osp.join(
|
261 |
+
self.cfg_dir, 'laionart.yaml')
|
262 |
+
elif name.find('celeba')==0:
|
263 |
+
return osp.join(
|
264 |
+
self.cfg_dir, 'celeba.yaml')
|
265 |
+
elif name.find('coyo')==0:
|
266 |
+
return osp.join(
|
267 |
+
self.cfg_dir, 'coyo.yaml')
|
268 |
+
elif name.find('pafc')==0:
|
269 |
+
return osp.join(
|
270 |
+
self.cfg_dir, 'pafc.yaml')
|
271 |
+
elif name.find('coco')==0:
|
272 |
+
return osp.join(
|
273 |
+
self.cfg_dir, 'coco.yaml')
|
274 |
+
else:
|
275 |
+
raise ValueError
|
276 |
+
|
277 |
+
class experiment_cfg_bank(object):
|
278 |
+
def __init__(self):
|
279 |
+
self.cfg_dir = osp.join('configs', 'experiment')
|
280 |
+
self.cfg_bank = edict()
|
281 |
+
|
282 |
+
def __call__(self, name):
|
283 |
+
if name not in self.cfg_bank:
|
284 |
+
cfg_path = self.get_yaml_path(name)
|
285 |
+
with open(cfg_path, 'r') as f:
|
286 |
+
cfg = yaml.load(
|
287 |
+
f, Loader=yaml.FullLoader)
|
288 |
+
cfg = edict(cfg)
|
289 |
+
|
290 |
+
cfg = cfg_solve(cfg, cfg)
|
291 |
+
cfg = cfg_solve(cfg, cfg)
|
292 |
+
# twice for SEARCH
|
293 |
+
self.cfg_bank[name] = cfg
|
294 |
+
return copy.deepcopy(cfg)
|
295 |
+
|
296 |
+
def get_yaml_path(self, name):
|
297 |
+
return osp.join(
|
298 |
+
self.cfg_dir, name+'.yaml')
|
299 |
+
|
300 |
+
def load_cfg_yaml(path):
|
301 |
+
if osp.isfile(path):
|
302 |
+
cfg_path = path
|
303 |
+
elif osp.isfile(osp.join('configs', 'experiment', path)):
|
304 |
+
cfg_path = osp.join('configs', 'experiment', path)
|
305 |
+
elif osp.isfile(osp.join('configs', 'experiment', path+'.yaml')):
|
306 |
+
cfg_path = osp.join('configs', 'experiment', path+'.yaml')
|
307 |
+
else:
|
308 |
+
assert False, 'No such config!'
|
309 |
+
|
310 |
+
with open(cfg_path, 'r') as f:
|
311 |
+
cfg = yaml.load(f, Loader=yaml.FullLoader)
|
312 |
+
cfg = edict(cfg)
|
313 |
+
cfg = cfg_solve(cfg, cfg)
|
314 |
+
cfg = cfg_solve(cfg, cfg)
|
315 |
+
return cfg
|
316 |
+
|
317 |
+
##############
|
318 |
+
# cfg_helper #
|
319 |
+
##############
|
320 |
+
|
321 |
+
def get_experiment_id(ref=None):
|
322 |
+
if ref is None:
|
323 |
+
time.sleep(0.5)
|
324 |
+
return int(time.time()*100)
|
325 |
+
else:
|
326 |
+
try:
|
327 |
+
return int(ref)
|
328 |
+
except:
|
329 |
+
pass
|
330 |
+
|
331 |
+
_, ref = osp.split(ref)
|
332 |
+
ref = ref.split('_')[0]
|
333 |
+
try:
|
334 |
+
return int(ref)
|
335 |
+
except:
|
336 |
+
assert False, 'Invalid experiment ID!'
|
337 |
+
|
338 |
+
def record_resume_cfg(path):
|
339 |
+
cnt = 0
|
340 |
+
while True:
|
341 |
+
if osp.exists(path+'.{:04d}'.format(cnt)):
|
342 |
+
cnt += 1
|
343 |
+
continue
|
344 |
+
shutil.copyfile(path, path+'.{:04d}'.format(cnt))
|
345 |
+
break
|
346 |
+
|
347 |
+
def get_command_line_args():
|
348 |
+
parser = argparse.ArgumentParser()
|
349 |
+
parser.add_argument('--debug', action='store_true', default=False)
|
350 |
+
parser.add_argument('--config', type=str)
|
351 |
+
parser.add_argument('--gpu', nargs='+', type=int)
|
352 |
+
|
353 |
+
parser.add_argument('--node_rank', type=int, default=0)
|
354 |
+
parser.add_argument('--nodes', type=int, default=1)
|
355 |
+
parser.add_argument('--addr', type=str, default='127.0.0.1')
|
356 |
+
parser.add_argument('--port', type=int, default=11233)
|
357 |
+
|
358 |
+
parser.add_argument('--signature', nargs='+', type=str)
|
359 |
+
parser.add_argument('--seed', type=int)
|
360 |
+
|
361 |
+
parser.add_argument('--eval', type=str)
|
362 |
+
parser.add_argument('--eval_subdir', type=str)
|
363 |
+
parser.add_argument('--pretrained', type=str)
|
364 |
+
|
365 |
+
parser.add_argument('--resume_dir', type=str)
|
366 |
+
parser.add_argument('--resume_step', type=int)
|
367 |
+
parser.add_argument('--resume_weight', type=str)
|
368 |
+
|
369 |
+
args = parser.parse_args()
|
370 |
+
|
371 |
+
# Special handling the resume
|
372 |
+
if args.resume_dir is not None:
|
373 |
+
cfg = edict()
|
374 |
+
cfg.env = edict()
|
375 |
+
cfg.env.debug = args.debug
|
376 |
+
cfg.env.resume = edict()
|
377 |
+
cfg.env.resume.dir = args.resume_dir
|
378 |
+
cfg.env.resume.step = args.resume_step
|
379 |
+
cfg.env.resume.weight = args.resume_weight
|
380 |
+
return cfg
|
381 |
+
|
382 |
+
cfg = load_cfg_yaml(args.config)
|
383 |
+
cfg.env.debug = args.debug
|
384 |
+
cfg.env.gpu_device = [0] if args.gpu is None else list(args.gpu)
|
385 |
+
cfg.env.master_addr = args.addr
|
386 |
+
cfg.env.master_port = args.port
|
387 |
+
cfg.env.dist_url = 'tcp://{}:{}'.format(args.addr, args.port)
|
388 |
+
cfg.env.node_rank = args.node_rank
|
389 |
+
cfg.env.nodes = args.nodes
|
390 |
+
|
391 |
+
istrain = False if args.eval is not None else True
|
392 |
+
isdebug = cfg.env.debug
|
393 |
+
|
394 |
+
if istrain:
|
395 |
+
if isdebug:
|
396 |
+
cfg.env.experiment_id = 999999999999
|
397 |
+
cfg.train.signature = ['debug']
|
398 |
+
else:
|
399 |
+
cfg.env.experiment_id = get_experiment_id()
|
400 |
+
if args.signature is not None:
|
401 |
+
cfg.train.signature = args.signature
|
402 |
+
else:
|
403 |
+
if 'train' in cfg:
|
404 |
+
cfg.pop('train')
|
405 |
+
cfg.env.experiment_id = get_experiment_id(args.eval)
|
406 |
+
if args.signature is not None:
|
407 |
+
cfg.eval.signature = args.signature
|
408 |
+
|
409 |
+
if isdebug and (args.eval is None):
|
410 |
+
cfg.env.experiment_id = 999999999999
|
411 |
+
cfg.eval.signature = ['debug']
|
412 |
+
|
413 |
+
if args.eval_subdir is not None:
|
414 |
+
if isdebug:
|
415 |
+
cfg.eval.eval_subdir = 'debug'
|
416 |
+
else:
|
417 |
+
cfg.eval.eval_subdir = args.eval_subdir
|
418 |
+
if args.pretrained is not None:
|
419 |
+
cfg.eval.pretrained = args.pretrained
|
420 |
+
# The override pretrained over the setting in cfg.model
|
421 |
+
|
422 |
+
if args.seed is not None:
|
423 |
+
cfg.env.rnd_seed = args.seed
|
424 |
+
|
425 |
+
return cfg
|
426 |
+
|
427 |
+
def cfg_initiates(cfg):
|
428 |
+
cfge = cfg.env
|
429 |
+
isdebug = cfge.debug
|
430 |
+
isresume = 'resume' in cfge
|
431 |
+
istrain = 'train' in cfg
|
432 |
+
haseval = 'eval' in cfg
|
433 |
+
cfgt = cfg.train if istrain else None
|
434 |
+
cfgv = cfg.eval if haseval else None
|
435 |
+
|
436 |
+
###############################
|
437 |
+
# get some environment params #
|
438 |
+
###############################
|
439 |
+
|
440 |
+
cfge.computer = os.uname()
|
441 |
+
cfge.torch_version = str(torch.__version__)
|
442 |
+
|
443 |
+
##########
|
444 |
+
# resume #
|
445 |
+
##########
|
446 |
+
|
447 |
+
if isresume:
|
448 |
+
resume_cfg_path = osp.join(cfge.resume.dir, 'config.yaml')
|
449 |
+
record_resume_cfg(resume_cfg_path)
|
450 |
+
with open(resume_cfg_path, 'r') as f:
|
451 |
+
cfg_resume = yaml.load(f, Loader=yaml.FullLoader)
|
452 |
+
cfg_resume = edict(cfg_resume)
|
453 |
+
cfg_resume.env.update(cfge)
|
454 |
+
cfg = cfg_resume
|
455 |
+
cfge = cfg.env
|
456 |
+
log_file = cfg.train.log_file
|
457 |
+
|
458 |
+
print('')
|
459 |
+
print('##########')
|
460 |
+
print('# resume #')
|
461 |
+
print('##########')
|
462 |
+
print('')
|
463 |
+
with open(log_file, 'a') as f:
|
464 |
+
print('', file=f)
|
465 |
+
print('##########', file=f)
|
466 |
+
print('# resume #', file=f)
|
467 |
+
print('##########', file=f)
|
468 |
+
print('', file=f)
|
469 |
+
|
470 |
+
pprint.pprint(cfg)
|
471 |
+
with open(log_file, 'a') as f:
|
472 |
+
pprint.pprint(cfg, f)
|
473 |
+
|
474 |
+
####################
|
475 |
+
# node distributed #
|
476 |
+
####################
|
477 |
+
|
478 |
+
if cfg.env.master_addr!='127.0.0.1':
|
479 |
+
os.environ['MASTER_ADDR'] = cfge.master_addr
|
480 |
+
os.environ['MASTER_PORT'] = '{}'.format(cfge.master_port)
|
481 |
+
if cfg.env.dist_backend=='nccl':
|
482 |
+
os.environ['NCCL_SOCKET_FAMILY'] = 'AF_INET'
|
483 |
+
if cfg.env.dist_backend=='gloo':
|
484 |
+
os.environ['GLOO_SOCKET_FAMILY'] = 'AF_INET'
|
485 |
+
|
486 |
+
#######################
|
487 |
+
# cuda visible device #
|
488 |
+
#######################
|
489 |
+
|
490 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
|
491 |
+
[str(gid) for gid in cfge.gpu_device])
|
492 |
+
|
493 |
+
#####################
|
494 |
+
# return resume cfg #
|
495 |
+
#####################
|
496 |
+
|
497 |
+
if isresume:
|
498 |
+
return cfg
|
499 |
+
|
500 |
+
#############################################
|
501 |
+
# some misc setting that not need in resume #
|
502 |
+
#############################################
|
503 |
+
|
504 |
+
cfgm = cfg.model
|
505 |
+
cfge.gpu_count = len(cfge.gpu_device)
|
506 |
+
|
507 |
+
##########################################
|
508 |
+
# align batch size and num worker config #
|
509 |
+
##########################################
|
510 |
+
|
511 |
+
gpu_n = cfge.gpu_count * cfge.nodes
|
512 |
+
def align_batch_size(bs, bs_per_gpu):
|
513 |
+
assert (bs is not None) or (bs_per_gpu is not None)
|
514 |
+
bs = bs_per_gpu * gpu_n if bs is None else bs
|
515 |
+
bs_per_gpu = bs // gpu_n if bs_per_gpu is None else bs_per_gpu
|
516 |
+
assert (bs == bs_per_gpu * gpu_n)
|
517 |
+
return bs, bs_per_gpu
|
518 |
+
|
519 |
+
if istrain:
|
520 |
+
cfgt.batch_size, cfgt.batch_size_per_gpu = \
|
521 |
+
align_batch_size(cfgt.batch_size, cfgt.batch_size_per_gpu)
|
522 |
+
cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu = \
|
523 |
+
align_batch_size(cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu)
|
524 |
+
if haseval:
|
525 |
+
cfgv.batch_size, cfgv.batch_size_per_gpu = \
|
526 |
+
align_batch_size(cfgv.batch_size, cfgv.batch_size_per_gpu)
|
527 |
+
cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu = \
|
528 |
+
align_batch_size(cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu)
|
529 |
+
|
530 |
+
##################
|
531 |
+
# create log dir #
|
532 |
+
##################
|
533 |
+
|
534 |
+
if istrain:
|
535 |
+
if not isdebug:
|
536 |
+
sig = cfgt.get('signature', [])
|
537 |
+
version = get_model().get_version(cfgm.type)
|
538 |
+
sig = sig + ['v{}'.format(version), 's{}'.format(cfge.rnd_seed)]
|
539 |
+
else:
|
540 |
+
sig = ['debug']
|
541 |
+
|
542 |
+
log_dir = [
|
543 |
+
cfge.log_root_dir,
|
544 |
+
'{}_{}'.format(cfgm.symbol, cfgt.dataset.symbol),
|
545 |
+
'_'.join([str(cfge.experiment_id)] + sig)
|
546 |
+
]
|
547 |
+
log_dir = osp.join(*log_dir)
|
548 |
+
log_file = osp.join(log_dir, 'train.log')
|
549 |
+
if not osp.exists(log_file):
|
550 |
+
os.makedirs(osp.dirname(log_file))
|
551 |
+
cfgt.log_dir = log_dir
|
552 |
+
cfgt.log_file = log_file
|
553 |
+
|
554 |
+
if haseval:
|
555 |
+
cfgv.log_dir = log_dir
|
556 |
+
cfgv.log_file = log_file
|
557 |
+
else:
|
558 |
+
model_symbol = cfgm.symbol
|
559 |
+
if cfgv.get('dataset', None) is None:
|
560 |
+
dataset_symbol = 'nodataset'
|
561 |
+
else:
|
562 |
+
dataset_symbol = cfgv.dataset.symbol
|
563 |
+
|
564 |
+
log_dir = osp.join(cfge.log_root_dir, '{}_{}'.format(model_symbol, dataset_symbol))
|
565 |
+
exp_dir = search_experiment_folder(log_dir, cfge.experiment_id)
|
566 |
+
if exp_dir is None:
|
567 |
+
if not isdebug:
|
568 |
+
sig = cfgv.get('signature', []) + ['evalonly']
|
569 |
+
else:
|
570 |
+
sig = ['debug']
|
571 |
+
exp_dir = '_'.join([str(cfge.experiment_id)] + sig)
|
572 |
+
|
573 |
+
eval_subdir = cfgv.get('eval_subdir', None)
|
574 |
+
# override subdir in debug mode (if eval_subdir is set)
|
575 |
+
eval_subdir = 'debug' if (eval_subdir is not None) and isdebug else eval_subdir
|
576 |
+
|
577 |
+
if eval_subdir is not None:
|
578 |
+
log_dir = osp.join(log_dir, exp_dir, eval_subdir)
|
579 |
+
else:
|
580 |
+
log_dir = osp.join(log_dir, exp_dir)
|
581 |
+
|
582 |
+
disable_log_override = cfgv.get('disable_log_override', False)
|
583 |
+
if osp.isdir(log_dir):
|
584 |
+
if disable_log_override:
|
585 |
+
assert False, 'Override an exsited log_dir is disabled at [{}]'.format(log_dir)
|
586 |
+
else:
|
587 |
+
os.makedirs(log_dir)
|
588 |
+
|
589 |
+
log_file = osp.join(log_dir, 'eval.log')
|
590 |
+
cfgv.log_dir = log_dir
|
591 |
+
cfgv.log_file = log_file
|
592 |
+
|
593 |
+
######################
|
594 |
+
# print and save cfg #
|
595 |
+
######################
|
596 |
+
|
597 |
+
pprint.pprint(cfg)
|
598 |
+
with open(log_file, 'w') as f:
|
599 |
+
pprint.pprint(cfg, f)
|
600 |
+
with open(osp.join(log_dir, 'config.yaml'), 'w') as f:
|
601 |
+
yaml.dump(edict_2_dict(cfg), f)
|
602 |
+
|
603 |
+
#############
|
604 |
+
# save code #
|
605 |
+
#############
|
606 |
+
|
607 |
+
save_code = False
|
608 |
+
if istrain:
|
609 |
+
save_code = cfgt.get('save_code', False)
|
610 |
+
elif haseval:
|
611 |
+
save_code = cfgv.get('save_code', False)
|
612 |
+
|
613 |
+
if save_code:
|
614 |
+
codedir = osp.join(log_dir, 'code')
|
615 |
+
if osp.exists(codedir):
|
616 |
+
shutil.rmtree(codedir)
|
617 |
+
for d in ['configs', 'lib']:
|
618 |
+
fromcodedir = d
|
619 |
+
tocodedir = osp.join(codedir, d)
|
620 |
+
shutil.copytree(
|
621 |
+
fromcodedir, tocodedir,
|
622 |
+
ignore=shutil.ignore_patterns(
|
623 |
+
'*__pycache__*', '*build*'))
|
624 |
+
for codei in os.listdir('.'):
|
625 |
+
if osp.splitext(codei)[1] == 'py':
|
626 |
+
shutil.copy(codei, codedir)
|
627 |
+
|
628 |
+
#######################
|
629 |
+
# set matplotlib mode #
|
630 |
+
#######################
|
631 |
+
|
632 |
+
if 'matplotlib_mode' in cfge:
|
633 |
+
try:
|
634 |
+
matplotlib.use(cfge.matplotlib_mode)
|
635 |
+
except:
|
636 |
+
print('Warning: matplotlib mode [{}] failed to be set!'.format(cfge.matplotlib_mode))
|
637 |
+
|
638 |
+
return cfg
|
639 |
+
|
640 |
+
def edict_2_dict(x):
|
641 |
+
if isinstance(x, dict):
|
642 |
+
xnew = {}
|
643 |
+
for k in x:
|
644 |
+
xnew[k] = edict_2_dict(x[k])
|
645 |
+
return xnew
|
646 |
+
elif isinstance(x, list):
|
647 |
+
xnew = []
|
648 |
+
for i in range(len(x)):
|
649 |
+
xnew.append( edict_2_dict(x[i]) )
|
650 |
+
return xnew
|
651 |
+
else:
|
652 |
+
return x
|
653 |
+
|
654 |
+
def search_experiment_folder(root, exid):
|
655 |
+
target = None
|
656 |
+
for fi in os.listdir(root):
|
657 |
+
if not osp.isdir(osp.join(root, fi)):
|
658 |
+
continue
|
659 |
+
if int(fi.split('_')[0]) == exid:
|
660 |
+
if target is not None:
|
661 |
+
return None # duplicated
|
662 |
+
elif target is None:
|
663 |
+
target = fi
|
664 |
+
return target
|
lib/cfg_holder.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
def singleton(class_):
|
4 |
+
instances = {}
|
5 |
+
def getinstance(*args, **kwargs):
|
6 |
+
if class_ not in instances:
|
7 |
+
instances[class_] = class_(*args, **kwargs)
|
8 |
+
return instances[class_]
|
9 |
+
return getinstance
|
10 |
+
|
11 |
+
##############
|
12 |
+
# cfg_holder #
|
13 |
+
##############
|
14 |
+
|
15 |
+
@singleton
|
16 |
+
class cfg_unique_holder(object):
|
17 |
+
def __init__(self):
|
18 |
+
self.cfg = None
|
19 |
+
# this is use to track the main codes.
|
20 |
+
self.code = set()
|
21 |
+
def save_cfg(self, cfg):
|
22 |
+
self.cfg = copy.deepcopy(cfg)
|
23 |
+
def add_code(self, code):
|
24 |
+
"""
|
25 |
+
A new main code is reached and
|
26 |
+
its name is added.
|
27 |
+
"""
|
28 |
+
self.code.add(code)
|
lib/data_factory/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.ds_base import collate, get_dataset
|
2 |
+
from .common.ds_loader import get_loader
|
3 |
+
from .common.ds_transform import get_transform
|
4 |
+
from .common.ds_estimator import get_estimator
|
5 |
+
from .common.ds_formatter import get_formatter
|
6 |
+
from .common.ds_sampler import get_sampler
|
lib/data_factory/common/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ds_base import ds_base, collate, register as regdataset
|
2 |
+
from .ds_loader import pre_loader_checkings, register as regloader
|
3 |
+
from .ds_transform import TBase, have, register as regtrans
|
4 |
+
from .ds_estimator import register as regestmat
|
5 |
+
from .ds_formatter import register as regformat
|
6 |
+
from .ds_sampler import register as regsampler
|
lib/data_factory/common/ds_base.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import numpy as np
|
4 |
+
import numpy.random as npr
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torchvision
|
8 |
+
import copy
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
from ... import sync
|
12 |
+
from ...cfg_holder import cfg_unique_holder as cfguh
|
13 |
+
from ...log_service import print_log
|
14 |
+
|
15 |
+
import torch.distributed as dist
|
16 |
+
from multiprocessing import shared_memory
|
17 |
+
import pickle
|
18 |
+
import hashlib
|
19 |
+
import random
|
20 |
+
|
21 |
+
class ds_base(torch.utils.data.Dataset):
|
22 |
+
def __init__(self,
|
23 |
+
cfg,
|
24 |
+
loader = None,
|
25 |
+
estimator = None,
|
26 |
+
transforms = None,
|
27 |
+
formatter = None):
|
28 |
+
|
29 |
+
self.cfg = cfg
|
30 |
+
self.load_info = None
|
31 |
+
self.init_load_info()
|
32 |
+
self.loader = loader
|
33 |
+
self.transforms = transforms
|
34 |
+
self.formatter = formatter
|
35 |
+
|
36 |
+
if self.load_info is not None:
|
37 |
+
load_info_order_by = getattr(self.cfg, 'load_info_order_by', 'default')
|
38 |
+
if load_info_order_by == 'default':
|
39 |
+
self.load_info = sorted(self.load_info, key=lambda x:x['unique_id'])
|
40 |
+
else:
|
41 |
+
try:
|
42 |
+
load_info_order_by, reverse = load_info_order_by.split('|')
|
43 |
+
reverse = reverse == 'reverse'
|
44 |
+
except:
|
45 |
+
reverse = False
|
46 |
+
self.load_info = sorted(
|
47 |
+
self.load_info, key=lambda x:x[load_info_order_by], reverse=reverse)
|
48 |
+
|
49 |
+
load_info_add_idx = getattr(self.cfg, 'load_info_add_idx', True)
|
50 |
+
if (self.load_info is not None) and load_info_add_idx:
|
51 |
+
for idx, info in enumerate(self.load_info):
|
52 |
+
info['idx'] = idx
|
53 |
+
|
54 |
+
if estimator is not None:
|
55 |
+
self.load_info = estimator(self.load_info)
|
56 |
+
|
57 |
+
self.try_sample = getattr(self.cfg, 'try_sample', None)
|
58 |
+
if self.try_sample is not None:
|
59 |
+
try:
|
60 |
+
start, end = self.try_sample
|
61 |
+
except:
|
62 |
+
start, end = 0, self.try_sample
|
63 |
+
self.load_info = self.load_info[start:end]
|
64 |
+
|
65 |
+
self.repeat = getattr(self.cfg, 'repeat', 1)
|
66 |
+
|
67 |
+
pick = getattr(self.cfg, 'pick', None)
|
68 |
+
if pick is not None:
|
69 |
+
self.load_info = [i for i in self.load_info if i['filename'] in pick]
|
70 |
+
|
71 |
+
#########
|
72 |
+
# cache #
|
73 |
+
#########
|
74 |
+
|
75 |
+
self.cache_sm = getattr(self.cfg, 'cache_sm', False)
|
76 |
+
self.cache_cnt = 0
|
77 |
+
if self.cache_sm:
|
78 |
+
self.cache_pct = getattr(self.cfg, 'cache_pct', 0)
|
79 |
+
cache_unique_id = sync.nodewise_sync().random_sync_id()
|
80 |
+
self.cache_unique_id = hashlib.sha256(pickle.dumps(cache_unique_id)).hexdigest()
|
81 |
+
self.__cache__(self.cache_pct)
|
82 |
+
|
83 |
+
#######
|
84 |
+
# log #
|
85 |
+
#######
|
86 |
+
|
87 |
+
if self.load_info is not None:
|
88 |
+
console_info = '{}: '.format(self.__class__.__name__)
|
89 |
+
console_info += 'total {} unique images, '.format(len(self.load_info))
|
90 |
+
console_info += 'total {} unique sample. Cached {}. Repeat {} times.'.format(
|
91 |
+
len(self.load_info), self.cache_cnt, self.repeat)
|
92 |
+
else:
|
93 |
+
console_info = '{}: load_info not ready.'.format(self.__class__.__name__)
|
94 |
+
print_log(console_info)
|
95 |
+
|
96 |
+
def init_load_info(self):
|
97 |
+
# implement by sub class
|
98 |
+
pass
|
99 |
+
|
100 |
+
def __len__(self):
|
101 |
+
return len(self.load_info)*self.repeat
|
102 |
+
|
103 |
+
def __cache__(self, pct):
|
104 |
+
if pct == 0:
|
105 |
+
self.cache_cnt = 0
|
106 |
+
return
|
107 |
+
self.cache_cnt = int(len(self.load_info)*pct)
|
108 |
+
if not self.cache_sm:
|
109 |
+
for i in range(self.cache_cnt):
|
110 |
+
self.load_info[i] = self.loader(self.load_info[i])
|
111 |
+
return
|
112 |
+
|
113 |
+
for i in range(self.cache_cnt):
|
114 |
+
shm_name = str(self.load_info[i]['unique_id']) + '_' + self.cache_unique_id
|
115 |
+
if i % self.local_world_size == self.local_rank:
|
116 |
+
data = pickle.dumps(self.loader(self.load_info[i]))
|
117 |
+
datan = len(data)
|
118 |
+
# self.print_smname_to_file(shm_name)
|
119 |
+
shm = shared_memory.SharedMemory(
|
120 |
+
name=shm_name, create=True, size=datan)
|
121 |
+
shm.buf[0:datan] = data[0:datan]
|
122 |
+
shm.close()
|
123 |
+
self.load_info[i] = shm_name
|
124 |
+
else:
|
125 |
+
self.load_info[i] = shm_name
|
126 |
+
dist.barrier()
|
127 |
+
|
128 |
+
def __getitem__(self, idx):
|
129 |
+
idx = idx%len(self.load_info)
|
130 |
+
# element = copy.deepcopy(self.load_info[idx])
|
131 |
+
|
132 |
+
# 0730 try shared memory
|
133 |
+
element = copy.deepcopy(self.load_info[idx])
|
134 |
+
if isinstance(element, str):
|
135 |
+
shm = shared_memory.SharedMemory(name=element)
|
136 |
+
element = pickle.loads(shm.buf)
|
137 |
+
shm.close()
|
138 |
+
else:
|
139 |
+
element = copy.deepcopy(element)
|
140 |
+
element['load_info_ptr'] = self.load_info
|
141 |
+
|
142 |
+
if idx >= self.cache_cnt:
|
143 |
+
element = self.loader(element)
|
144 |
+
if self.transforms is not None:
|
145 |
+
element = self.transforms(element)
|
146 |
+
if self.formatter is not None:
|
147 |
+
return self.formatter(element)
|
148 |
+
else:
|
149 |
+
return element
|
150 |
+
|
151 |
+
# 0730 try shared memory
|
152 |
+
def __del__(self):
|
153 |
+
# Clean the shared memory
|
154 |
+
for infoi in self.load_info:
|
155 |
+
if isinstance(infoi, str) and (self.local_rank==0):
|
156 |
+
shm = shared_memory.SharedMemory(name=infoi)
|
157 |
+
shm.close()
|
158 |
+
shm.unlink()
|
159 |
+
|
160 |
+
def print_smname_to_file(self, smname):
|
161 |
+
try:
|
162 |
+
log_file = cfguh().cfg.train.log_file
|
163 |
+
except:
|
164 |
+
try:
|
165 |
+
log_file = cfguh().cfg.eval.log_file
|
166 |
+
except:
|
167 |
+
raise ValueError
|
168 |
+
# a trick to use the log_file path
|
169 |
+
sm_file = log_file.replace('.log', '.smname')
|
170 |
+
with open(sm_file, 'a') as f:
|
171 |
+
f.write(smname + '\n')
|
172 |
+
|
173 |
+
def singleton(class_):
|
174 |
+
instances = {}
|
175 |
+
def getinstance(*args, **kwargs):
|
176 |
+
if class_ not in instances:
|
177 |
+
instances[class_] = class_(*args, **kwargs)
|
178 |
+
return instances[class_]
|
179 |
+
return getinstance
|
180 |
+
|
181 |
+
from .ds_loader import get_loader
|
182 |
+
from .ds_transform import get_transform
|
183 |
+
from .ds_estimator import get_estimator
|
184 |
+
from .ds_formatter import get_formatter
|
185 |
+
|
186 |
+
@singleton
|
187 |
+
class get_dataset(object):
|
188 |
+
def __init__(self):
|
189 |
+
self.dataset = {}
|
190 |
+
|
191 |
+
def register(self, ds):
|
192 |
+
self.dataset[ds.__name__] = ds
|
193 |
+
|
194 |
+
def __call__(self, cfg):
|
195 |
+
if cfg is None:
|
196 |
+
return None
|
197 |
+
t = cfg.type
|
198 |
+
if t is None:
|
199 |
+
return None
|
200 |
+
elif t in ['laion2b', 'laion2b_dummy',
|
201 |
+
'laion2b_webdataset',
|
202 |
+
'laion2b_webdataset_sdofficial', ]:
|
203 |
+
from .. import ds_laion2b
|
204 |
+
elif t in ['coyo', 'coyo_dummy',
|
205 |
+
'coyo_webdataset', ]:
|
206 |
+
from .. import ds_coyo_webdataset
|
207 |
+
elif t in ['laionart', 'laionart_dummy',
|
208 |
+
'laionart_webdataset', ]:
|
209 |
+
from .. import ds_laionart
|
210 |
+
elif t in ['celeba']:
|
211 |
+
from .. import ds_celeba
|
212 |
+
elif t in ['div2k']:
|
213 |
+
from .. import ds_div2k
|
214 |
+
elif t in ['pafc']:
|
215 |
+
from .. import ds_pafc
|
216 |
+
elif t in ['coco_caption']:
|
217 |
+
from .. import ds_coco
|
218 |
+
else:
|
219 |
+
raise ValueError
|
220 |
+
|
221 |
+
loader = get_loader() (cfg.get('loader' , None))
|
222 |
+
transform = get_transform()(cfg.get('transform', None))
|
223 |
+
estimator = get_estimator()(cfg.get('estimator', None))
|
224 |
+
formatter = get_formatter()(cfg.get('formatter', None))
|
225 |
+
|
226 |
+
return self.dataset[t](
|
227 |
+
cfg, loader, estimator,
|
228 |
+
transform, formatter)
|
229 |
+
|
230 |
+
def register():
|
231 |
+
def wrapper(class_):
|
232 |
+
get_dataset().register(class_)
|
233 |
+
return class_
|
234 |
+
return wrapper
|
235 |
+
|
236 |
+
# some other helpers
|
237 |
+
|
238 |
+
class collate(object):
|
239 |
+
"""
|
240 |
+
Modified from torch.utils.data._utils.collate
|
241 |
+
It handle list different from the default.
|
242 |
+
List collate just by append each other.
|
243 |
+
"""
|
244 |
+
def __init__(self):
|
245 |
+
self.default_collate = \
|
246 |
+
torch.utils.data._utils.collate.default_collate
|
247 |
+
|
248 |
+
def __call__(self, batch):
|
249 |
+
"""
|
250 |
+
Args:
|
251 |
+
batch: [data, data] -or- [(data1, data2, ...), (data1, data2, ...)]
|
252 |
+
This function will not be used as induction function
|
253 |
+
"""
|
254 |
+
elem = batch[0]
|
255 |
+
if not (elem, (tuple, list)):
|
256 |
+
return self.default_collate(batch)
|
257 |
+
|
258 |
+
rv = []
|
259 |
+
# transposed
|
260 |
+
for i in zip(*batch):
|
261 |
+
if isinstance(i[0], list):
|
262 |
+
if len(i[0]) != 1:
|
263 |
+
raise ValueError
|
264 |
+
try:
|
265 |
+
i = [[self.default_collate(ii).squeeze(0)] for ii in i]
|
266 |
+
except:
|
267 |
+
pass
|
268 |
+
rvi = list(itertools.chain.from_iterable(i))
|
269 |
+
rv.append(rvi) # list concat
|
270 |
+
else:
|
271 |
+
rv.append(self.default_collate(i))
|
272 |
+
return rv
|
lib/data_factory/common/ds_estimator.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import numpy as np
|
3 |
+
import numpy.random as npr
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import xml.etree.ElementTree as ET
|
9 |
+
import json
|
10 |
+
import copy
|
11 |
+
import math
|
12 |
+
|
13 |
+
def singleton(class_):
|
14 |
+
instances = {}
|
15 |
+
def getinstance(*args, **kwargs):
|
16 |
+
if class_ not in instances:
|
17 |
+
instances[class_] = class_(*args, **kwargs)
|
18 |
+
return instances[class_]
|
19 |
+
return getinstance
|
20 |
+
|
21 |
+
@singleton
|
22 |
+
class get_estimator(object):
|
23 |
+
def __init__(self):
|
24 |
+
self.estimator = {}
|
25 |
+
|
26 |
+
def register(self, estimf):
|
27 |
+
self.estimator[estimf.__name__] = estimf
|
28 |
+
|
29 |
+
def __call__(self, cfg):
|
30 |
+
if cfg is None:
|
31 |
+
return None
|
32 |
+
t = cfg.type
|
33 |
+
return self.estimator[t](**cfg.args)
|
34 |
+
|
35 |
+
def register():
|
36 |
+
def wrapper(class_):
|
37 |
+
get_estimator().register(class_)
|
38 |
+
return class_
|
39 |
+
return wrapper
|
lib/data_factory/common/ds_formatter.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import numpy as np
|
4 |
+
import numpy.random as npr
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import copy
|
8 |
+
import gc
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
def singleton(class_):
|
12 |
+
instances = {}
|
13 |
+
def getinstance(*args, **kwargs):
|
14 |
+
if class_ not in instances:
|
15 |
+
instances[class_] = class_(*args, **kwargs)
|
16 |
+
return instances[class_]
|
17 |
+
return getinstance
|
18 |
+
|
19 |
+
@singleton
|
20 |
+
class get_formatter(object):
|
21 |
+
def __init__(self):
|
22 |
+
self.formatter = {}
|
23 |
+
|
24 |
+
def register(self, formatf):
|
25 |
+
self.formatter[formatf.__name__] = formatf
|
26 |
+
|
27 |
+
def __call__(self, cfg):
|
28 |
+
if cfg is None:
|
29 |
+
return None
|
30 |
+
t = cfg.type
|
31 |
+
return self.formatter[t](**cfg.args)
|
32 |
+
|
33 |
+
def register():
|
34 |
+
def wrapper(class_):
|
35 |
+
get_formatter().register(class_)
|
36 |
+
return class_
|
37 |
+
return wrapper
|
lib/data_factory/common/ds_loader.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import numpy as np
|
3 |
+
import numpy.random as npr
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import xml.etree.ElementTree as ET
|
9 |
+
import json
|
10 |
+
import copy
|
11 |
+
|
12 |
+
from ...cfg_holder import cfg_unique_holder as cfguh
|
13 |
+
|
14 |
+
def singleton(class_):
|
15 |
+
instances = {}
|
16 |
+
def getinstance(*args, **kwargs):
|
17 |
+
if class_ not in instances:
|
18 |
+
instances[class_] = class_(*args, **kwargs)
|
19 |
+
return instances[class_]
|
20 |
+
return getinstance
|
21 |
+
|
22 |
+
@singleton
|
23 |
+
class get_loader(object):
|
24 |
+
def __init__(self):
|
25 |
+
self.loader = {}
|
26 |
+
|
27 |
+
def register(self, loadf):
|
28 |
+
self.loader[loadf.__name__] = loadf
|
29 |
+
|
30 |
+
def __call__(self, cfg):
|
31 |
+
if cfg is None:
|
32 |
+
return None
|
33 |
+
if isinstance(cfg, list):
|
34 |
+
loader = []
|
35 |
+
for ci in cfg:
|
36 |
+
t = ci.type
|
37 |
+
loader.append(self.loader[t](**ci.args))
|
38 |
+
return compose(loader)
|
39 |
+
t = cfg.type
|
40 |
+
return self.loader[t](**cfg.args)
|
41 |
+
|
42 |
+
class compose(object):
|
43 |
+
def __init__(self, loaders):
|
44 |
+
self.loaders = loaders
|
45 |
+
|
46 |
+
def __call__(self, element):
|
47 |
+
for l in self.loaders:
|
48 |
+
element = l(element)
|
49 |
+
return element
|
50 |
+
|
51 |
+
def __getitem__(self, idx):
|
52 |
+
return self.loaders[idx]
|
53 |
+
|
54 |
+
def register():
|
55 |
+
def wrapper(class_):
|
56 |
+
get_loader().register(class_)
|
57 |
+
return class_
|
58 |
+
return wrapper
|
59 |
+
|
60 |
+
def pre_loader_checkings(ltype):
|
61 |
+
lpath = ltype+'_path'
|
62 |
+
# cache feature added on 20201021
|
63 |
+
lcache = ltype+'_cache'
|
64 |
+
def wrapper(func):
|
65 |
+
def inner(self, element):
|
66 |
+
if lcache in element:
|
67 |
+
# cache feature added on 20201021
|
68 |
+
data = element[lcache]
|
69 |
+
else:
|
70 |
+
if ltype in element:
|
71 |
+
raise ValueError
|
72 |
+
if lpath not in element:
|
73 |
+
raise ValueError
|
74 |
+
|
75 |
+
if element[lpath] is None:
|
76 |
+
data = None
|
77 |
+
else:
|
78 |
+
data = func(self, element[lpath], element)
|
79 |
+
element[ltype] = data
|
80 |
+
|
81 |
+
if ltype == 'image':
|
82 |
+
if isinstance(data, np.ndarray):
|
83 |
+
imsize = data.shape[-2:]
|
84 |
+
elif isinstance(data, PIL.Image.Image):
|
85 |
+
imsize = data.size[::-1]
|
86 |
+
elif isinstance(data, torch.Tensor):
|
87 |
+
imsize = [data.size(-2), data.size(-1)]
|
88 |
+
elif data is None:
|
89 |
+
imsize = None
|
90 |
+
else:
|
91 |
+
raise ValueError
|
92 |
+
element['imsize'] = imsize
|
93 |
+
element['imsize_current'] = copy.deepcopy(imsize)
|
94 |
+
return element
|
95 |
+
return inner
|
96 |
+
return wrapper
|
lib/data_factory/common/ds_sampler.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tokenize import group
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import numpy.random as npr
|
5 |
+
import torch.distributed as dist
|
6 |
+
import math
|
7 |
+
|
8 |
+
from ...log_service import print_log
|
9 |
+
from ... import sync
|
10 |
+
|
11 |
+
def singleton(class_):
|
12 |
+
instances = {}
|
13 |
+
def getinstance(*args, **kwargs):
|
14 |
+
if class_ not in instances:
|
15 |
+
instances[class_] = class_(*args, **kwargs)
|
16 |
+
return instances[class_]
|
17 |
+
return getinstance
|
18 |
+
|
19 |
+
@singleton
|
20 |
+
class get_sampler(object):
|
21 |
+
def __init__(self):
|
22 |
+
self.sampler = {}
|
23 |
+
|
24 |
+
def register(self, sampler):
|
25 |
+
self.sampler[sampler.__name__] = sampler
|
26 |
+
|
27 |
+
def __call__(self, dataset, cfg):
|
28 |
+
if cfg == 'default_train':
|
29 |
+
return GlobalDistributedSampler(dataset, shuffle=True, extend=False)
|
30 |
+
elif cfg == 'default_eval':
|
31 |
+
return GlobalDistributedSampler(dataset, shuffle=False, extend=True)
|
32 |
+
else:
|
33 |
+
t = cfg.type
|
34 |
+
return self.sampler[t](dataset=dataset, **cfg.args)
|
35 |
+
|
36 |
+
def register():
|
37 |
+
def wrapper(class_):
|
38 |
+
get_sampler().register(class_)
|
39 |
+
return class_
|
40 |
+
return wrapper
|
41 |
+
|
42 |
+
######################
|
43 |
+
# DistributedSampler #
|
44 |
+
######################
|
45 |
+
|
46 |
+
@register()
|
47 |
+
class GlobalDistributedSampler(torch.utils.data.Sampler):
|
48 |
+
"""
|
49 |
+
This is a distributed sampler that sync accross gpus and nodes.
|
50 |
+
"""
|
51 |
+
def __init__(self,
|
52 |
+
dataset,
|
53 |
+
shuffle=True,
|
54 |
+
extend=False,):
|
55 |
+
"""
|
56 |
+
Arguments:
|
57 |
+
dataset: Dataset used for sampling.
|
58 |
+
shuffle: If true, sampler will shuffle the indices
|
59 |
+
extend: If true, sampler will extend the indices that can be even distributed by ranks
|
60 |
+
otherwise sampler will truncate the indices to make it even.
|
61 |
+
"""
|
62 |
+
self.ddp = sync.is_ddp()
|
63 |
+
self.rank = sync.get_rank('global')
|
64 |
+
self.world_size = sync.get_world_size('global')
|
65 |
+
self.dataset = dataset
|
66 |
+
self.shuffle = shuffle
|
67 |
+
self.extend = extend
|
68 |
+
|
69 |
+
num_samples = len(dataset) // self.world_size
|
70 |
+
if extend and (len(dataset)%self.world_size != 0):
|
71 |
+
num_samples+=1
|
72 |
+
self.num_samples = num_samples
|
73 |
+
self.total_size = num_samples * self.world_size
|
74 |
+
|
75 |
+
def __iter__(self):
|
76 |
+
indices = self.get_sync_order()
|
77 |
+
if self.extend:
|
78 |
+
# extend using the front indices
|
79 |
+
indices = indices+indices[0:self.total_size-len(indices)]
|
80 |
+
else:
|
81 |
+
# truncate
|
82 |
+
indices = indices[0:self.total_size]
|
83 |
+
# subsample
|
84 |
+
indices = indices[self.rank : len(indices) : self.world_size]
|
85 |
+
return iter(indices)
|
86 |
+
|
87 |
+
def __len__(self):
|
88 |
+
return self.num_samples
|
89 |
+
|
90 |
+
def get_sync_order(self):
|
91 |
+
if self.shuffle:
|
92 |
+
indices = torch.randperm(len(self.dataset)).to(self.rank)
|
93 |
+
if self.ddp:
|
94 |
+
dist.broadcast(indices, src=0)
|
95 |
+
indices = indices.to('cpu').tolist()
|
96 |
+
else:
|
97 |
+
indices = list(range(len(self.dataset)))
|
98 |
+
print_log('Sampler : {}'.format(str(indices[0:5])) )
|
99 |
+
return indices
|
100 |
+
|
101 |
+
@register()
|
102 |
+
class LocalDistributedSampler(GlobalDistributedSampler):
|
103 |
+
"""
|
104 |
+
This is a distributed sampler that sync across gpus within the nodes.
|
105 |
+
But not sync across nodes.
|
106 |
+
"""
|
107 |
+
def __init__(self,
|
108 |
+
dataset,
|
109 |
+
shuffle=True,
|
110 |
+
extend=False,):
|
111 |
+
super().__init__(dataset, shuffle, extend)
|
112 |
+
self.rank = sync.get_rank('local')
|
113 |
+
self.world_size = sync.get_world_size('local')
|
114 |
+
|
115 |
+
def get_sync_order(self):
|
116 |
+
if self.shuffle:
|
117 |
+
if self.rank == 0:
|
118 |
+
indices = list(npr.permutation(len(self.dataset)))
|
119 |
+
sync.nodewise_sync().broadcast_r0(indices)
|
120 |
+
else:
|
121 |
+
indices = sync.nodewise_sync().broadcast_r0(None)
|
122 |
+
else:
|
123 |
+
indices = list(range(len(self.dataset)))
|
124 |
+
print_log('Sampler : {}'.format(str(indices[0:5])) )
|
125 |
+
return indices
|
126 |
+
|
127 |
+
############################
|
128 |
+
# random sample with group #
|
129 |
+
############################
|
130 |
+
# Deprecated
|
131 |
+
|
132 |
+
@register()
|
133 |
+
class GroupSampler(torch.utils.data.Sampler):
|
134 |
+
"""
|
135 |
+
This is a new DistributedSampler that sample all index according to group.
|
136 |
+
i.e.
|
137 |
+
if group_size=3, num_replicas=2, train mode:
|
138 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|
139 |
+
==> (group) [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]
|
140 |
+
==> (distribute) process0: [3, 4, 5], (leftover [6, 7, 8, 9, 10])
|
141 |
+
process1: [0, 1, 2]
|
142 |
+
==> (group leftover) process0: [3, 4, 5], (leftover [6, 7], [8, 9], 10)
|
143 |
+
process1: [0, 1, 2]
|
144 |
+
==> (distribute) process0: [3, 4, 5], [6, 7] (remove 10)
|
145 |
+
process1: [0, 1, 2], [8, 9]
|
146 |
+
|
147 |
+
it will avoid_batchsize=1:
|
148 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8,
|
149 |
+
==> (group) [0, 1, 2], [3, 4, 5], [6, 7, 8]
|
150 |
+
==> (distribute) process0: [3, 4, 5], (leftover [6, 7, 8])
|
151 |
+
process1: [0, 1, 2]
|
152 |
+
==> (group leftover) process0: [3, 4, 5], (leftover [6], [7], [8])
|
153 |
+
process1: [0, 1, 2]
|
154 |
+
==> (distribute) process0: [3, 4, 5], (remove 6, 7, 8) (because distribute make batchsize 1)
|
155 |
+
process1: [0, 1, 2]
|
156 |
+
|
157 |
+
if group_size=3, num_replicas=2, eval mode:
|
158 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|
159 |
+
==> (extend) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10
|
160 |
+
==> (group) [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 10]
|
161 |
+
==> (distribute) process0: [0, 1, 2], [6, 7, 8],
|
162 |
+
process1: [3, 4, 5], [9, 10, 10]
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(self,
|
166 |
+
dataset,
|
167 |
+
group_size,
|
168 |
+
num_replicas=None,
|
169 |
+
rank=None,
|
170 |
+
mode='train',):
|
171 |
+
if num_replicas is None:
|
172 |
+
if not dist.is_available():
|
173 |
+
raise ValueError
|
174 |
+
num_replicas = dist.get_world_size()
|
175 |
+
if rank is None:
|
176 |
+
if not dist.is_available():
|
177 |
+
raise ValueError
|
178 |
+
rank = dist.get_rank()
|
179 |
+
|
180 |
+
self.dataset = dataset
|
181 |
+
self.len_dataset = len(dataset)
|
182 |
+
self.group_size = group_size
|
183 |
+
self.num_replicas = num_replicas
|
184 |
+
self.rank = rank
|
185 |
+
self.mode = mode
|
186 |
+
len_dataset = self.len_dataset
|
187 |
+
|
188 |
+
if (len_dataset % num_replicas != 0) and (mode == 'train'):
|
189 |
+
# drop the non_aligned
|
190 |
+
aligned_indices = np.arange(len_dataset)[:-(len_dataset % num_replicas)]
|
191 |
+
aligned_len_dataset = aligned_indices.shape[0]
|
192 |
+
elif (len_dataset % num_replicas != 0) and (mode == 'eval'):
|
193 |
+
extend = np.array([len_dataset-1 for _ in range(num_replicas - len_dataset % num_replicas)])
|
194 |
+
aligned_indices = np.concatenate([range(len_dataset), extend])
|
195 |
+
aligned_len_dataset = aligned_indices.shape[0]
|
196 |
+
else:
|
197 |
+
aligned_indices = np.arange(len_dataset)
|
198 |
+
aligned_len_dataset = len_dataset
|
199 |
+
|
200 |
+
num_even_distributed_groups = aligned_len_dataset // (group_size * num_replicas)
|
201 |
+
num_even = num_even_distributed_groups * group_size * num_replicas
|
202 |
+
|
203 |
+
self.regular_groups = aligned_indices[0:num_even].reshape(-1, group_size)
|
204 |
+
self.leftover_groups = aligned_indices[num_even:].reshape(num_replicas, -1)
|
205 |
+
|
206 |
+
if self.leftover_groups.size == 0:
|
207 |
+
self.leftover_groups = None
|
208 |
+
elif (self.leftover_groups.shape[-1]==1) and (mode == 'train'):
|
209 |
+
# avoid bs=1
|
210 |
+
self.leftover_groups = None
|
211 |
+
|
212 |
+
# a urly way to modify dataset.load_info according to the grouping
|
213 |
+
for groupi in self.regular_groups:
|
214 |
+
for idx in groupi:
|
215 |
+
idx_lowerbd = groupi[0]
|
216 |
+
idx_upperbd = groupi[-1]
|
217 |
+
idx_reference = (idx_lowerbd+idx_upperbd)//2
|
218 |
+
dataset.load_info[idx]['ref_size'] = dataset.load_info[idx_reference]['image_size']
|
219 |
+
if self.leftover_groups is not None:
|
220 |
+
for groupi in self.leftover_groups:
|
221 |
+
for idx in groupi:
|
222 |
+
idx_lowerbd = groupi[0]
|
223 |
+
idx_upperbd = groupi[-1]
|
224 |
+
idx_reference = (idx_lowerbd+idx_upperbd)//2
|
225 |
+
dataset.load_info[idx]['ref_size'] = dataset.load_info[idx_reference]['image_size']
|
226 |
+
|
227 |
+
def concat(self, nparrays, axis=0):
|
228 |
+
# a helper for save concaternation
|
229 |
+
nparrays = [i for i in nparrays if i.size > 0]
|
230 |
+
return np.concatenate(nparrays, axis=axis)
|
231 |
+
|
232 |
+
def __iter__(self):
|
233 |
+
indices = self.get_sync_order()
|
234 |
+
return iter(indices)
|
235 |
+
|
236 |
+
def __len__(self):
|
237 |
+
return self.num_samples
|
238 |
+
|
239 |
+
def get_sync_order(self):
|
240 |
+
# g = torch.Generator()
|
241 |
+
# g.manual_seed(self.epoch)
|
242 |
+
|
243 |
+
mode = self.mode
|
244 |
+
rank = self.rank
|
245 |
+
num_replicas = self.num_replicas
|
246 |
+
group_size = self.group_size
|
247 |
+
num_groups = len(self.regular_groups)
|
248 |
+
|
249 |
+
if mode == 'train':
|
250 |
+
g_indices = torch.randperm(num_groups).to(rank)
|
251 |
+
dist.broadcast(g_indices, src=0)
|
252 |
+
g_indices = g_indices.to('cpu').tolist()
|
253 |
+
num_groups_per_rank = num_groups // num_replicas
|
254 |
+
groups = self.regular_groups[g_indices][num_groups_per_rank*rank : num_groups_per_rank*(rank+1)]
|
255 |
+
indices = groups.flatten()
|
256 |
+
|
257 |
+
if self.leftover_groups is not None:
|
258 |
+
leftg_indices = torch.randperm(len(self.leftover_groups)).to(rank)
|
259 |
+
dist.broadcast(leftg_indices, src=0)
|
260 |
+
leftg_indices = leftg_indices.to('cpu').tolist()
|
261 |
+
last = self.leftover_groups[leftg_indices][rank]
|
262 |
+
indices = np.concatenate([indices, last], axis=0)
|
263 |
+
elif mode == 'eval':
|
264 |
+
groups = self.regular_groups.reshape(-1, num_replicas, group_size)[:, rank, :]
|
265 |
+
indices = groups.flatten()
|
266 |
+
if self.leftover_groups is not None:
|
267 |
+
last = self.leftover_groups[rank]
|
268 |
+
indices = np.concatenate([indices, last], axis=0)
|
269 |
+
else:
|
270 |
+
raise ValueError
|
271 |
+
|
272 |
+
print_log('Sampler RANK {} : {}'.format(rank, str(indices[0:group_size+1])))
|
273 |
+
return indices
|
lib/data_factory/common/ds_transform.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import numpy as np
|
3 |
+
import numpy.random as npr
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import xml.etree.ElementTree as ET
|
9 |
+
import json
|
10 |
+
import copy
|
11 |
+
import math
|
12 |
+
|
13 |
+
def singleton(class_):
|
14 |
+
instances = {}
|
15 |
+
def getinstance(*args, **kwargs):
|
16 |
+
if class_ not in instances:
|
17 |
+
instances[class_] = class_(*args, **kwargs)
|
18 |
+
return instances[class_]
|
19 |
+
return getinstance
|
20 |
+
|
21 |
+
@singleton
|
22 |
+
class get_transform(object):
|
23 |
+
def __init__(self):
|
24 |
+
self.transform = {}
|
25 |
+
|
26 |
+
def register(self, transf):
|
27 |
+
self.transform[transf.__name__] = transf
|
28 |
+
|
29 |
+
def __call__(self, cfg):
|
30 |
+
if cfg is None:
|
31 |
+
return None
|
32 |
+
if isinstance(cfg, list):
|
33 |
+
loader = []
|
34 |
+
for ci in cfg:
|
35 |
+
t = ci.type
|
36 |
+
loader.append(self.transform[t](**ci.args))
|
37 |
+
return compose(loader)
|
38 |
+
t = cfg.type
|
39 |
+
return self.transform[t](**cfg.args)
|
40 |
+
|
41 |
+
def register():
|
42 |
+
def wrapper(class_):
|
43 |
+
get_transform().register(class_)
|
44 |
+
return class_
|
45 |
+
return wrapper
|
46 |
+
|
47 |
+
def have(must=[], may=[]):
|
48 |
+
"""
|
49 |
+
The nextgen decorator that have two list of
|
50 |
+
input tells what category the transform
|
51 |
+
will operate on.
|
52 |
+
Args:
|
53 |
+
must: [] of str,
|
54 |
+
the names of the items that must be included
|
55 |
+
inside the element.
|
56 |
+
If element[name] exist: do the transform
|
57 |
+
If element[name] is None: raise Exception.
|
58 |
+
If element[name] not exist: raise Exception.
|
59 |
+
may: [] of str,
|
60 |
+
the names of the items that may be contained
|
61 |
+
inside the element for transform.
|
62 |
+
If element[name] exist: do the transform
|
63 |
+
If element[name] is None: ignore it.
|
64 |
+
If element[name] not exist: ignore it.
|
65 |
+
"""
|
66 |
+
def route(self, item, e, d):
|
67 |
+
"""
|
68 |
+
Route the element to a proper function
|
69 |
+
for calculation.
|
70 |
+
Args:
|
71 |
+
self: object,
|
72 |
+
the transform functor.
|
73 |
+
item: str,
|
74 |
+
the item name of the data.
|
75 |
+
e: {},
|
76 |
+
the element
|
77 |
+
d: nparray, tensor or PIL.Image,
|
78 |
+
the data to transform.
|
79 |
+
"""
|
80 |
+
if isinstance(d, np.ndarray):
|
81 |
+
dtype = 'nparray'
|
82 |
+
elif isinstance(d, torch.Tensor):
|
83 |
+
dtype = 'tensor'
|
84 |
+
elif isinstance(d, PIL.Image.Image):
|
85 |
+
dtype = 'pilimage'
|
86 |
+
else:
|
87 |
+
raise ValueError
|
88 |
+
|
89 |
+
# find function by order
|
90 |
+
f = None
|
91 |
+
for attrname in [
|
92 |
+
'exec_{}_{}'.format(item, dtype),
|
93 |
+
'exec_{}'.format(item),
|
94 |
+
'exec_{}'.format(dtype),
|
95 |
+
'exec']:
|
96 |
+
f = getattr(self, attrname, None)
|
97 |
+
if f is not None:
|
98 |
+
break
|
99 |
+
d, e = f(d, e)
|
100 |
+
e[item] = d
|
101 |
+
return e
|
102 |
+
|
103 |
+
def wrapper(func):
|
104 |
+
def inner(self, e):
|
105 |
+
e['imsize_previous'] = e['imsize_current']
|
106 |
+
imsize_tag_cnt = 0
|
107 |
+
imsize_tag = 'imsize_before_' + self.__class__.__name__
|
108 |
+
while True:
|
109 |
+
if imsize_tag_cnt != 0:
|
110 |
+
tag = imsize_tag + str(imsize_tag_cnt)
|
111 |
+
else:
|
112 |
+
tag = imsize_tag
|
113 |
+
if not tag in e:
|
114 |
+
e[tag] = e['imsize_current']
|
115 |
+
break
|
116 |
+
imsize_tag_cnt += 1
|
117 |
+
|
118 |
+
e = func(self, e)
|
119 |
+
# must transform list
|
120 |
+
for item in must:
|
121 |
+
try:
|
122 |
+
d = e[item]
|
123 |
+
except:
|
124 |
+
raise ValueError
|
125 |
+
if d is None:
|
126 |
+
raise ValueError
|
127 |
+
e = route(self, item, e, d)
|
128 |
+
# may transform list
|
129 |
+
for item in may:
|
130 |
+
try:
|
131 |
+
d = e[item]
|
132 |
+
except:
|
133 |
+
d = None
|
134 |
+
if d is not None:
|
135 |
+
e = route(self, item, e, d)
|
136 |
+
return e
|
137 |
+
return inner
|
138 |
+
return wrapper
|
139 |
+
|
140 |
+
class compose(object):
|
141 |
+
def __init__(self, transforms):
|
142 |
+
self.transforms = transforms
|
143 |
+
|
144 |
+
def __call__(self, element):
|
145 |
+
for t in self.transforms:
|
146 |
+
element = t(element)
|
147 |
+
return element
|
148 |
+
|
149 |
+
class TBase(object):
|
150 |
+
def __init__(self):
|
151 |
+
pass
|
152 |
+
|
153 |
+
def exec(self, data, element):
|
154 |
+
raise ValueError
|
155 |
+
|
156 |
+
def rand(self,
|
157 |
+
uid,
|
158 |
+
tag,
|
159 |
+
rand_f,
|
160 |
+
*args,
|
161 |
+
**kwargs):
|
162 |
+
"""
|
163 |
+
Args:
|
164 |
+
uid: string element['unique_id']
|
165 |
+
tag: string tells the tag uses when tracking the random number.
|
166 |
+
Or the tag to restore the tracked random number.
|
167 |
+
rand_f: the random function use to generate random number.
|
168 |
+
**kwargs: the argument for the given random function.
|
169 |
+
"""
|
170 |
+
# if rnduh().hdata is not None:
|
171 |
+
# return rnduh().get_history(uid, self.__class__.__name__, tag)
|
172 |
+
# if rnduh().record_path is None:
|
173 |
+
# return rand_f(*args, **kwargs)
|
174 |
+
# the special mode to create the random file.
|
175 |
+
d = rand_f(*args, **kwargs)
|
176 |
+
# rnduh().record(uid, self.__class__.__name__, tag, d)
|
177 |
+
return d
|
lib/evaluator/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .eva_base import get_evaluator
|
lib/evaluator/eva_base.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed as dist
|
3 |
+
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
import numpy as np
|
7 |
+
import copy
|
8 |
+
import json
|
9 |
+
|
10 |
+
from ..log_service import print_log
|
11 |
+
|
12 |
+
def singleton(class_):
|
13 |
+
instances = {}
|
14 |
+
def getinstance(*args, **kwargs):
|
15 |
+
if class_ not in instances:
|
16 |
+
instances[class_] = class_(*args, **kwargs)
|
17 |
+
return instances[class_]
|
18 |
+
return getinstance
|
19 |
+
|
20 |
+
@singleton
|
21 |
+
class get_evaluator(object):
|
22 |
+
def __init__(self):
|
23 |
+
self.evaluator = {}
|
24 |
+
|
25 |
+
def register(self, evaf, name):
|
26 |
+
self.evaluator[name] = evaf
|
27 |
+
|
28 |
+
def __call__(self, pipeline_cfg=None):
|
29 |
+
if pipeline_cfg is None:
|
30 |
+
from . import eva_null
|
31 |
+
return self.evaluator['null']()
|
32 |
+
|
33 |
+
if not isinstance(pipeline_cfg, list):
|
34 |
+
t = pipeline_cfg.type
|
35 |
+
if t == 'miou':
|
36 |
+
from . import eva_miou
|
37 |
+
if t == 'psnr':
|
38 |
+
from . import eva_psnr
|
39 |
+
if t == 'ssim':
|
40 |
+
from . import eva_ssim
|
41 |
+
if t == 'lpips':
|
42 |
+
from . import eva_lpips
|
43 |
+
if t == 'fid':
|
44 |
+
from . import eva_fid
|
45 |
+
return self.evaluator[t](**pipeline_cfg.args)
|
46 |
+
|
47 |
+
evaluator = []
|
48 |
+
for ci in pipeline_cfg:
|
49 |
+
t = ci.type
|
50 |
+
if t == 'miou':
|
51 |
+
from . import eva_miou
|
52 |
+
if t == 'psnr':
|
53 |
+
from . import eva_psnr
|
54 |
+
if t == 'ssim':
|
55 |
+
from . import eva_ssim
|
56 |
+
if t == 'lpips':
|
57 |
+
from . import eva_lpips
|
58 |
+
if t == 'fid':
|
59 |
+
from . import eva_fid
|
60 |
+
evaluator.append(
|
61 |
+
self.evaluator[t](**ci.args))
|
62 |
+
if len(evaluator) == 0:
|
63 |
+
return None
|
64 |
+
else:
|
65 |
+
return compose(evaluator)
|
66 |
+
|
67 |
+
def register(name):
|
68 |
+
def wrapper(class_):
|
69 |
+
get_evaluator().register(class_, name)
|
70 |
+
return class_
|
71 |
+
return wrapper
|
72 |
+
|
73 |
+
class base_evaluator(object):
|
74 |
+
def __init__(self,
|
75 |
+
**args):
|
76 |
+
'''
|
77 |
+
Args:
|
78 |
+
sample_n, int,
|
79 |
+
the total number of sample. used in
|
80 |
+
distributed sync
|
81 |
+
'''
|
82 |
+
if not dist.is_available():
|
83 |
+
raise ValueError
|
84 |
+
self.world_size = dist.get_world_size()
|
85 |
+
self.rank = dist.get_rank()
|
86 |
+
self.sample_n = None
|
87 |
+
self.final = {}
|
88 |
+
|
89 |
+
def sync(self, data):
|
90 |
+
"""
|
91 |
+
Args:
|
92 |
+
data: any,
|
93 |
+
the data needs to be broadcasted
|
94 |
+
"""
|
95 |
+
if data is None:
|
96 |
+
return None
|
97 |
+
|
98 |
+
if isinstance(data, tuple):
|
99 |
+
data = list(data)
|
100 |
+
|
101 |
+
if isinstance(data, list):
|
102 |
+
data_list = []
|
103 |
+
for datai in data:
|
104 |
+
data_list.append(self.sync(datai))
|
105 |
+
data = [[*i] for i in zip(*data_list)]
|
106 |
+
return data
|
107 |
+
|
108 |
+
data = [
|
109 |
+
self.sync_(data, ranki)
|
110 |
+
for ranki in range(self.world_size)
|
111 |
+
]
|
112 |
+
return data
|
113 |
+
|
114 |
+
def sync_(self, data, rank):
|
115 |
+
|
116 |
+
t = type(data)
|
117 |
+
is_broadcast = rank == self.rank
|
118 |
+
|
119 |
+
if t is np.ndarray:
|
120 |
+
dtrans = data
|
121 |
+
dt = data.dtype
|
122 |
+
if dt in [
|
123 |
+
int,
|
124 |
+
np.bool,
|
125 |
+
np.uint8,
|
126 |
+
np.int8,
|
127 |
+
np.int16,
|
128 |
+
np.int32,
|
129 |
+
np.int64,]:
|
130 |
+
dtt = torch.int64
|
131 |
+
elif dt in [
|
132 |
+
float,
|
133 |
+
np.float16,
|
134 |
+
np.float32,
|
135 |
+
np.float64,]:
|
136 |
+
dtt = torch.float64
|
137 |
+
|
138 |
+
elif t is str:
|
139 |
+
dtrans = np.array(
|
140 |
+
[ord(c) for c in data],
|
141 |
+
dtype = np.int64
|
142 |
+
)
|
143 |
+
dt = np.int64
|
144 |
+
dtt = torch.int64
|
145 |
+
else:
|
146 |
+
raise ValueError
|
147 |
+
|
148 |
+
if is_broadcast:
|
149 |
+
n = len(dtrans.shape)
|
150 |
+
n = torch.tensor(n).long()
|
151 |
+
|
152 |
+
n = n.to(self.rank)
|
153 |
+
dist.broadcast(n, src=rank)
|
154 |
+
|
155 |
+
n = list(dtrans.shape)
|
156 |
+
n = torch.tensor(n).long()
|
157 |
+
n = n.to(self.rank)
|
158 |
+
dist.broadcast(n, src=rank)
|
159 |
+
|
160 |
+
n = torch.tensor(dtrans, dtype=dtt)
|
161 |
+
n = n.to(self.rank)
|
162 |
+
dist.broadcast(n, src=rank)
|
163 |
+
return data
|
164 |
+
|
165 |
+
n = torch.tensor(0).long()
|
166 |
+
n = n.to(self.rank)
|
167 |
+
dist.broadcast(n, src=rank)
|
168 |
+
n = n.item()
|
169 |
+
|
170 |
+
n = torch.zeros(n).long()
|
171 |
+
n = n.to(self.rank)
|
172 |
+
dist.broadcast(n, src=rank)
|
173 |
+
n = list(n.to('cpu').numpy())
|
174 |
+
|
175 |
+
n = torch.zeros(n, dtype=dtt)
|
176 |
+
n = n.to(self.rank)
|
177 |
+
dist.broadcast(n, src=rank)
|
178 |
+
n = n.to('cpu').numpy().astype(dt)
|
179 |
+
|
180 |
+
if t is np.ndarray:
|
181 |
+
return n
|
182 |
+
elif t is str:
|
183 |
+
n = ''.join([chr(c) for c in n])
|
184 |
+
return n
|
185 |
+
|
186 |
+
def zipzap_arrange(self, data):
|
187 |
+
'''
|
188 |
+
Order the data so it range like this:
|
189 |
+
input [[0, 2, 4, 6], [1, 3, 5, 7]] -> output [0, 1, 2, 3, 4, 5, ...]
|
190 |
+
'''
|
191 |
+
if isinstance(data[0], list):
|
192 |
+
data_new = []
|
193 |
+
maxlen = max([len(i) for i in data])
|
194 |
+
totlen = sum([len(i) for i in data])
|
195 |
+
cnt = 0
|
196 |
+
for idx in range(maxlen):
|
197 |
+
for datai in data:
|
198 |
+
data_new += [datai[idx]]
|
199 |
+
cnt += 1
|
200 |
+
if cnt >= totlen:
|
201 |
+
break
|
202 |
+
return data_new
|
203 |
+
|
204 |
+
elif isinstance(data[0], np.ndarray):
|
205 |
+
maxlen = max([i.shape[0] for i in data])
|
206 |
+
totlen = sum([i.shape[0] for i in data])
|
207 |
+
datai_shape = data[0].shape[1:]
|
208 |
+
data = [
|
209 |
+
np.concatenate(datai, np.zeros(maxlen-datai.shape[0], *datai_shape), axis=0)
|
210 |
+
if datai.shape[0] < maxlen else datai
|
211 |
+
for datai in data
|
212 |
+
] # even the array
|
213 |
+
data = np.stack(data, axis=1).reshape(-1, *datai_shape)
|
214 |
+
data = data[:totlen]
|
215 |
+
return data
|
216 |
+
|
217 |
+
else:
|
218 |
+
raise NotImplementedError
|
219 |
+
|
220 |
+
def add_batch(self, **args):
|
221 |
+
raise NotImplementedError
|
222 |
+
|
223 |
+
def set_sample_n(self, sample_n):
|
224 |
+
self.sample_n = sample_n
|
225 |
+
|
226 |
+
def compute(self):
|
227 |
+
raise NotImplementedError
|
228 |
+
|
229 |
+
# Function needed in training to judge which
|
230 |
+
# evaluated number is better
|
231 |
+
def isbetter(self, old, new):
|
232 |
+
return new>old
|
233 |
+
|
234 |
+
def one_line_summary(self):
|
235 |
+
print_log('Evaluator display')
|
236 |
+
|
237 |
+
def save(self, path):
|
238 |
+
if not osp.exists(path):
|
239 |
+
os.makedirs(path)
|
240 |
+
ofile = osp.join(path, 'result.json')
|
241 |
+
with open(ofile, 'w') as f:
|
242 |
+
json.dump(self.final, f, indent=4)
|
243 |
+
|
244 |
+
def clear_data(self):
|
245 |
+
raise NotImplementedError
|
246 |
+
|
247 |
+
class compose(object):
|
248 |
+
def __init__(self, pipeline):
|
249 |
+
self.pipeline = pipeline
|
250 |
+
self.sample_n = None
|
251 |
+
self.final = {}
|
252 |
+
|
253 |
+
def add_batch(self, *args, **kwargs):
|
254 |
+
for pi in self.pipeline:
|
255 |
+
pi.add_batch(*args, **kwargs)
|
256 |
+
|
257 |
+
def set_sample_n(self, sample_n):
|
258 |
+
self.sample_n = sample_n
|
259 |
+
for pi in self.pipeline:
|
260 |
+
pi.set_sample_n(sample_n)
|
261 |
+
|
262 |
+
def compute(self):
|
263 |
+
rv = {}
|
264 |
+
for pi in self.pipeline:
|
265 |
+
rv[pi.symbol] = pi.compute()
|
266 |
+
self.final[pi.symbol] = pi.final
|
267 |
+
return rv
|
268 |
+
|
269 |
+
def isbetter(self, old, new):
|
270 |
+
check = 0
|
271 |
+
for pi in self.pipeline:
|
272 |
+
if pi.isbetter(old, new):
|
273 |
+
check+=1
|
274 |
+
if check/len(self.pipeline)>0.5:
|
275 |
+
return True
|
276 |
+
else:
|
277 |
+
return False
|
278 |
+
|
279 |
+
def one_line_summary(self):
|
280 |
+
for pi in self.pipeline:
|
281 |
+
pi.one_line_summary()
|
282 |
+
|
283 |
+
def save(self, path):
|
284 |
+
if not osp.exists(path):
|
285 |
+
os.makedirs(path)
|
286 |
+
ofile = osp.join(path, 'result.json')
|
287 |
+
with open(ofile, 'w') as f:
|
288 |
+
json.dump(self.final, f, indent=4)
|
289 |
+
|
290 |
+
def clear_data(self):
|
291 |
+
for pi in self.pipeline:
|
292 |
+
pi.clear_data()
|
lib/evaluator/eva_null.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from .. import nputils
|
5 |
+
from ..log_service import print_log
|
6 |
+
|
7 |
+
from .eva_base import base_evaluator, register
|
8 |
+
|
9 |
+
@register('null')
|
10 |
+
class null_evaluator(base_evaluator):
|
11 |
+
def __init__(self, **dummy):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
def add_batch(self,
|
15 |
+
**dummy):
|
16 |
+
pass
|
17 |
+
|
18 |
+
def compute(self):
|
19 |
+
return None
|
20 |
+
|
21 |
+
def one_line_summary(self):
|
22 |
+
print_log('Evaluator null')
|
23 |
+
|
24 |
+
def clear_data(self):
|
25 |
+
pass
|
lib/experiments/__init__.py
ADDED
File without changes
|
lib/experiments/sd_default.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed as dist
|
3 |
+
from torchvision import transforms as tvtrans
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
import time
|
7 |
+
import timeit
|
8 |
+
import copy
|
9 |
+
import json
|
10 |
+
import pickle
|
11 |
+
import PIL.Image
|
12 |
+
import numpy as np
|
13 |
+
from datetime import datetime
|
14 |
+
from easydict import EasyDict as edict
|
15 |
+
from collections import OrderedDict
|
16 |
+
|
17 |
+
from lib.cfg_holder import cfg_unique_holder as cfguh
|
18 |
+
from lib.data_factory import get_dataset, get_sampler, collate
|
19 |
+
from lib.model_zoo import \
|
20 |
+
get_model, get_optimizer, get_scheduler
|
21 |
+
from lib.log_service import print_log
|
22 |
+
|
23 |
+
from ..utils import train as train_base
|
24 |
+
from ..utils import eval as eval_base
|
25 |
+
from ..utils import train_stage as tsbase
|
26 |
+
from ..utils import eval_stage as esbase
|
27 |
+
from .. import sync
|
28 |
+
|
29 |
+
###############
|
30 |
+
# some helper #
|
31 |
+
###############
|
32 |
+
|
33 |
+
def atomic_save(cfg, net, opt, step, path):
|
34 |
+
if isinstance(net, (torch.nn.DataParallel,
|
35 |
+
torch.nn.parallel.DistributedDataParallel)):
|
36 |
+
netm = net.module
|
37 |
+
else:
|
38 |
+
netm = net
|
39 |
+
sd = netm.state_dict()
|
40 |
+
slimmed_sd = [(ki, vi) for ki, vi in sd.items()
|
41 |
+
if ki.find('first_stage_model')!=0 and ki.find('cond_stage_model')!=0]
|
42 |
+
|
43 |
+
checkpoint = {
|
44 |
+
"config" : cfg,
|
45 |
+
"state_dict" : OrderedDict(slimmed_sd),
|
46 |
+
"step" : step}
|
47 |
+
if opt is not None:
|
48 |
+
checkpoint['optimizer_states'] = opt.state_dict()
|
49 |
+
import io
|
50 |
+
import fsspec
|
51 |
+
bytesbuffer = io.BytesIO()
|
52 |
+
torch.save(checkpoint, bytesbuffer)
|
53 |
+
with fsspec.open(path, "wb") as f:
|
54 |
+
f.write(bytesbuffer.getvalue())
|
55 |
+
|
56 |
+
def load_state_dict(net, cfg):
|
57 |
+
pretrained_pth_full = cfg.get('pretrained_pth_full' , None)
|
58 |
+
pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
|
59 |
+
pretrained_pth = cfg.get('pretrained_pth' , None)
|
60 |
+
pretrained_ckpt = cfg.get('pretrained_ckpt' , None)
|
61 |
+
pretrained_pth_dm = cfg.get('pretrained_pth_dm' , None)
|
62 |
+
pretrained_pth_ema = cfg.get('pretrained_pth_ema' , None)
|
63 |
+
strict_sd = cfg.get('strict_sd', False)
|
64 |
+
errmsg = "Overlapped model state_dict! This is undesired behavior!"
|
65 |
+
|
66 |
+
if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
|
67 |
+
assert (pretrained_pth is None) and \
|
68 |
+
(pretrained_ckpt is None) and \
|
69 |
+
(pretrained_pth_dm is None) and \
|
70 |
+
(pretrained_pth_ema is None), errmsg
|
71 |
+
if pretrained_pth_full is not None:
|
72 |
+
target_file = pretrained_pth_full
|
73 |
+
sd = torch.load(target_file, map_location='cpu')
|
74 |
+
assert pretrained_ckpt is None, errmsg
|
75 |
+
else:
|
76 |
+
target_file = pretrained_ckpt_full
|
77 |
+
sd = torch.load(target_file, map_location='cpu')['state_dict']
|
78 |
+
print_log('Load full model from [{}] strict [{}].'.format(
|
79 |
+
target_file, strict_sd))
|
80 |
+
net.load_state_dict(sd, strict=strict_sd)
|
81 |
+
|
82 |
+
if pretrained_pth is not None or pretrained_ckpt is not None:
|
83 |
+
assert (pretrained_ckpt_full is None) and \
|
84 |
+
(pretrained_pth_full is None) and \
|
85 |
+
(pretrained_pth_dm is None) and \
|
86 |
+
(pretrained_pth_ema is None), errmsg
|
87 |
+
if pretrained_pth is not None:
|
88 |
+
target_file = pretrained_pth
|
89 |
+
sd = torch.load(target_file, map_location='cpu')
|
90 |
+
assert pretrained_ckpt is None, errmsg
|
91 |
+
else:
|
92 |
+
target_file = pretrained_ckpt
|
93 |
+
sd = torch.load(target_file, map_location='cpu')['state_dict']
|
94 |
+
print_log('Load model from [{}] strict [{}].'.format(
|
95 |
+
target_file, strict_sd))
|
96 |
+
sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
|
97 |
+
if ki.find('first_stage_model')==0 or ki.find('cond_stage_model')==0]
|
98 |
+
sd.update(OrderedDict(sd_extra))
|
99 |
+
net.load_state_dict(sd, strict=strict_sd)
|
100 |
+
|
101 |
+
if pretrained_pth_dm is not None:
|
102 |
+
assert (pretrained_ckpt_full is None) and \
|
103 |
+
(pretrained_pth_full is None) and \
|
104 |
+
(pretrained_pth is None) and \
|
105 |
+
(pretrained_ckpt is None), errmsg
|
106 |
+
print_log('Load diffusion model from [{}] strict [{}].'.format(
|
107 |
+
pretrained_pth_dm, strict_sd))
|
108 |
+
sd = torch.load(pretrained_pth_dm, map_location='cpu')
|
109 |
+
net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)
|
110 |
+
|
111 |
+
if pretrained_pth_ema is not None:
|
112 |
+
assert (pretrained_ckpt_full is None) and \
|
113 |
+
(pretrained_pth_full is None) and \
|
114 |
+
(pretrained_pth is None) and \
|
115 |
+
(pretrained_ckpt is None), errmsg
|
116 |
+
print_log('Load unet ema model from [{}] strict [{}].'.format(
|
117 |
+
pretrained_pth_ema, strict_sd))
|
118 |
+
sd = torch.load(pretrained_pth_ema, map_location='cpu')
|
119 |
+
net.model_ema.load_state_dict(sd, strict=strict_sd)
|
120 |
+
|
121 |
+
def auto_merge_imlist(imlist, max=64):
|
122 |
+
imlist = imlist[0:max]
|
123 |
+
h, w = imlist[0].shape[0:2]
|
124 |
+
num_images = len(imlist)
|
125 |
+
num_row = int(np.sqrt(num_images))
|
126 |
+
num_col = num_images//num_row + 1 if num_images%num_row!=0 else num_images//num_row
|
127 |
+
canvas = np.zeros([num_row*h, num_col*w, 3], dtype=np.uint8)
|
128 |
+
for idx, im in enumerate(imlist):
|
129 |
+
hi = (idx // num_col) * h
|
130 |
+
wi = (idx % num_col) * w
|
131 |
+
canvas[hi:hi+h, wi:wi+w, :] = im
|
132 |
+
return canvas
|
133 |
+
|
134 |
+
def latent2im(net, latent):
|
135 |
+
single_input = len(latent.shape) == 3
|
136 |
+
if single_input:
|
137 |
+
latent = latent[None]
|
138 |
+
im = net.decode_image(latent.to(net.device))
|
139 |
+
im = torch.clamp((im+1.0)/2.0, min=0.0, max=1.0)
|
140 |
+
im = [tvtrans.ToPILImage()(i) for i in im]
|
141 |
+
if single_input:
|
142 |
+
im = im[0]
|
143 |
+
return im
|
144 |
+
|
145 |
+
def im2latent(net, im):
|
146 |
+
single_input = not isinstance(im, list)
|
147 |
+
if single_input:
|
148 |
+
im = [im]
|
149 |
+
im = torch.stack([tvtrans.ToTensor()(i) for i in im], dim=0)
|
150 |
+
im = (im*2-1).to(net.device)
|
151 |
+
z = net.encode_image(im)
|
152 |
+
if single_input:
|
153 |
+
z = z[0]
|
154 |
+
return z
|
155 |
+
|
156 |
+
class color_adjust(object):
|
157 |
+
def __init__(self, ref_from, ref_to):
|
158 |
+
x0, m0, std0 = self.get_data_and_stat(ref_from)
|
159 |
+
x1, m1, std1 = self.get_data_and_stat(ref_to)
|
160 |
+
self.ref_from_stat = (m0, std0)
|
161 |
+
self.ref_to_stat = (m1, std1)
|
162 |
+
self.ref_from = self.preprocess(x0).reshape(-1, 3)
|
163 |
+
self.ref_to = x1.reshape(-1, 3)
|
164 |
+
|
165 |
+
def get_data_and_stat(self, x):
|
166 |
+
if isinstance(x, str):
|
167 |
+
x = np.array(PIL.Image.open(x))
|
168 |
+
elif isinstance(x, PIL.Image.Image):
|
169 |
+
x = np.array(x)
|
170 |
+
elif isinstance(x, torch.Tensor):
|
171 |
+
x = torch.clamp(x, min=0.0, max=1.0)
|
172 |
+
x = np.array(tvtrans.ToPILImage()(x))
|
173 |
+
elif isinstance(x, np.ndarray):
|
174 |
+
pass
|
175 |
+
else:
|
176 |
+
raise ValueError
|
177 |
+
x = x.astype(float)
|
178 |
+
m = np.reshape(x, (-1, 3)).mean(0)
|
179 |
+
s = np.reshape(x, (-1, 3)).std(0)
|
180 |
+
return x, m, s
|
181 |
+
|
182 |
+
def preprocess(self, x):
|
183 |
+
m0, s0 = self.ref_from_stat
|
184 |
+
m1, s1 = self.ref_to_stat
|
185 |
+
y = ((x-m0)/s0)*s1 + m1
|
186 |
+
return y
|
187 |
+
|
188 |
+
def __call__(self, xin, keep=0, simple=False):
|
189 |
+
xin, _, _ = self.get_data_and_stat(xin)
|
190 |
+
x = self.preprocess(xin)
|
191 |
+
if simple:
|
192 |
+
y = (x*(1-keep) + xin*keep)
|
193 |
+
y = np.clip(y, 0, 255).astype(np.uint8)
|
194 |
+
return y
|
195 |
+
|
196 |
+
h, w = x.shape[:2]
|
197 |
+
x = x.reshape(-1, 3)
|
198 |
+
y = []
|
199 |
+
for chi in range(3):
|
200 |
+
yi = self.pdf_transfer_1d(self.ref_from[:, chi], self.ref_to[:, chi], x[:, chi])
|
201 |
+
y.append(yi)
|
202 |
+
|
203 |
+
y = np.stack(y, axis=1)
|
204 |
+
y = y.reshape(h, w, 3)
|
205 |
+
y = (y.astype(float)*(1-keep) + xin.astype(float)*keep)
|
206 |
+
y = np.clip(y, 0, 255).astype(np.uint8)
|
207 |
+
return y
|
208 |
+
|
209 |
+
def pdf_transfer_1d(self, arr_fo, arr_to, arr_in, n=600):
|
210 |
+
arr = np.concatenate((arr_fo, arr_to))
|
211 |
+
min_v = arr.min() - 1e-6
|
212 |
+
max_v = arr.max() + 1e-6
|
213 |
+
min_vto = arr_to.min() - 1e-6
|
214 |
+
max_vto = arr_to.max() + 1e-6
|
215 |
+
xs = np.array(
|
216 |
+
[min_v + (max_v - min_v) * i / n for i in range(n + 1)])
|
217 |
+
hist_fo, _ = np.histogram(arr_fo, xs)
|
218 |
+
hist_to, _ = np.histogram(arr_to, xs)
|
219 |
+
xs = xs[:-1]
|
220 |
+
# compute probability distribution
|
221 |
+
cum_fo = np.cumsum(hist_fo)
|
222 |
+
cum_to = np.cumsum(hist_to)
|
223 |
+
d_fo = cum_fo / cum_fo[-1]
|
224 |
+
d_to = cum_to / cum_to[-1]
|
225 |
+
# transfer
|
226 |
+
t_d = np.interp(d_fo, d_to, xs)
|
227 |
+
t_d[d_fo <= d_to[ 0]] = min_vto
|
228 |
+
t_d[d_fo >= d_to[-1]] = max_vto
|
229 |
+
arr_out = np.interp(arr_in, xs, t_d)
|
230 |
+
return arr_out
|
231 |
+
|
232 |
+
########
|
233 |
+
# main #
|
234 |
+
########
|
235 |
+
|
236 |
+
class eval(eval_base):
|
237 |
+
def prepare_model(self):
|
238 |
+
cfg = cfguh().cfg
|
239 |
+
net = get_model()(cfg.model)
|
240 |
+
if cfg.env.cuda:
|
241 |
+
net.to(self.local_rank)
|
242 |
+
load_state_dict(net, cfg.eval) #<--- added
|
243 |
+
net = torch.nn.parallel.DistributedDataParallel(
|
244 |
+
net, device_ids=[self.local_rank],
|
245 |
+
find_unused_parameters=True)
|
246 |
+
net.eval()
|
247 |
+
return {'net' : net,}
|
248 |
+
|
249 |
+
class eval_stage(esbase):
|
250 |
+
"""
|
251 |
+
This is eval stage that can check comprehensive results
|
252 |
+
"""
|
253 |
+
def __init__(self):
|
254 |
+
from ..model_zoo.ddim import DDIMSampler
|
255 |
+
self.sampler = DDIMSampler
|
256 |
+
|
257 |
+
def get_net(self, paras):
|
258 |
+
return paras['net']
|
259 |
+
|
260 |
+
def get_image_path(self):
|
261 |
+
if 'train' in cfguh().cfg:
|
262 |
+
log_dir = cfguh().cfg.train.log_dir
|
263 |
+
else:
|
264 |
+
log_dir = cfguh().cfg.eval.log_dir
|
265 |
+
return os.path.join(log_dir, "udemo")
|
266 |
+
|
267 |
+
@torch.no_grad()
|
268 |
+
def sample(self, net, sampler, prompt, output_dim, scale, n_samples, ddim_steps, ddim_eta):
|
269 |
+
h, w = output_dim
|
270 |
+
uc = None
|
271 |
+
if scale != 1.0:
|
272 |
+
uc = net.get_learned_conditioning(n_samples * [""])
|
273 |
+
c = net.get_learned_conditioning(n_samples * [prompt])
|
274 |
+
shape = [4, h//8, w//8]
|
275 |
+
rv = sampler.sample(
|
276 |
+
S=ddim_steps,
|
277 |
+
conditioning=c,
|
278 |
+
batch_size=n_samples,
|
279 |
+
shape=shape,
|
280 |
+
verbose=False,
|
281 |
+
unconditional_guidance_scale=scale,
|
282 |
+
unconditional_conditioning=uc,
|
283 |
+
eta=ddim_eta)
|
284 |
+
return rv
|
285 |
+
|
286 |
+
def save_images(self, pil_list, name, path, suffix=''):
|
287 |
+
canvas = auto_merge_imlist([np.array(i) for i in pil_list])
|
288 |
+
image_name = '{}{}.png'.format(name, suffix)
|
289 |
+
PIL.Image.fromarray(canvas).save(osp.join(path, image_name))
|
290 |
+
|
291 |
+
def __call__(self, **paras):
|
292 |
+
cfg = cfguh().cfg
|
293 |
+
cfgv = cfg.eval
|
294 |
+
|
295 |
+
net = paras['net']
|
296 |
+
eval_cnt = paras.get('eval_cnt', None)
|
297 |
+
fix_seed = cfgv.get('fix_seed', False)
|
298 |
+
|
299 |
+
LRANK = sync.get_rank('local')
|
300 |
+
LWSIZE = sync.get_world_size('local')
|
301 |
+
|
302 |
+
image_path = self.get_image_path()
|
303 |
+
self.create_dir(image_path)
|
304 |
+
eval_cnt = paras.get('eval_cnt', None)
|
305 |
+
suffix='' if eval_cnt is None else '_itern'+str(eval_cnt)
|
306 |
+
|
307 |
+
if isinstance(net, (torch.nn.DataParallel,
|
308 |
+
torch.nn.parallel.DistributedDataParallel)):
|
309 |
+
netm = net.module
|
310 |
+
else:
|
311 |
+
netm = net
|
312 |
+
|
313 |
+
with_ema = getattr(netm, 'model_ema', None) is not None
|
314 |
+
sampler = self.sampler(netm)
|
315 |
+
setattr(netm, 'device', LRANK) # Trick
|
316 |
+
|
317 |
+
replicate = cfgv.get('replicate', 1)
|
318 |
+
conditioning = cfgv.conditioning * replicate
|
319 |
+
conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
|
320 |
+
seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]
|
321 |
+
|
322 |
+
for prompti, seedi in zip(conditioning_local, seed_increment):
|
323 |
+
if prompti == 'SKIP':
|
324 |
+
continue
|
325 |
+
draw_filename = prompti.strip().replace(' ', '-')
|
326 |
+
if fix_seed:
|
327 |
+
np.random.seed(cfg.env.rnd_seed + seedi)
|
328 |
+
torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
|
329 |
+
suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
|
330 |
+
else:
|
331 |
+
suffixi = suffix
|
332 |
+
|
333 |
+
if with_ema:
|
334 |
+
with netm.ema_scope():
|
335 |
+
x, _ = self.sample(netm, sampler, prompti, **cfgv.sample)
|
336 |
+
else:
|
337 |
+
x, _ = self.sample(netm, sampler, prompti, **cfgv.sample)
|
338 |
+
|
339 |
+
demo_image = latent2im(netm, x)
|
340 |
+
self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)
|
341 |
+
|
342 |
+
if eval_cnt is not None:
|
343 |
+
print_log('Demo printed for {}'.format(eval_cnt))
|
344 |
+
return {}
|
345 |
+
|
346 |
+
##################
|
347 |
+
# eval variation #
|
348 |
+
##################
|
349 |
+
|
350 |
+
class eval_stage_variation(eval_stage):
|
351 |
+
@torch.no_grad()
|
352 |
+
def sample(self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta):
|
353 |
+
h, w = output_dim
|
354 |
+
vh = tvtrans.ToTensor()(PIL.Image.open(visual_hint))[None].to(net.device)
|
355 |
+
c = net.get_learned_conditioning(vh)
|
356 |
+
c = c.repeat(n_samples, 1, 1)
|
357 |
+
uc = None
|
358 |
+
if scale != 1.0:
|
359 |
+
dummy = torch.zeros_like(vh)
|
360 |
+
uc = net.get_learned_conditioning(dummy)
|
361 |
+
uc = uc.repeat(n_samples, 1, 1)
|
362 |
+
|
363 |
+
shape = [4, h//8, w//8]
|
364 |
+
rv = sampler.sample(
|
365 |
+
S=ddim_steps,
|
366 |
+
conditioning=c,
|
367 |
+
batch_size=n_samples,
|
368 |
+
shape=shape,
|
369 |
+
verbose=False,
|
370 |
+
unconditional_guidance_scale=scale,
|
371 |
+
unconditional_conditioning=uc,
|
372 |
+
eta=ddim_eta)
|
373 |
+
return rv
|
374 |
+
|
375 |
+
def __call__(self, **paras):
|
376 |
+
cfg = cfguh().cfg
|
377 |
+
cfgv = cfg.eval
|
378 |
+
|
379 |
+
net = paras['net']
|
380 |
+
eval_cnt = paras.get('eval_cnt', None)
|
381 |
+
fix_seed = cfgv.get('fix_seed', False)
|
382 |
+
|
383 |
+
LRANK = sync.get_rank('local')
|
384 |
+
LWSIZE = sync.get_world_size('local')
|
385 |
+
|
386 |
+
image_path = self.get_image_path()
|
387 |
+
self.create_dir(image_path)
|
388 |
+
eval_cnt = paras.get('eval_cnt', None)
|
389 |
+
suffix='' if eval_cnt is None else '_'+str(eval_cnt)
|
390 |
+
|
391 |
+
if isinstance(net, (torch.nn.DataParallel,
|
392 |
+
torch.nn.parallel.DistributedDataParallel)):
|
393 |
+
netm = net.module
|
394 |
+
else:
|
395 |
+
netm = net
|
396 |
+
|
397 |
+
with_ema = getattr(netm, 'model_ema', None) is not None
|
398 |
+
sampler = self.sampler(netm)
|
399 |
+
setattr(netm, 'device', LRANK) # Trick
|
400 |
+
|
401 |
+
color_adj = cfguh().cfg.eval.get('color_adj', False)
|
402 |
+
color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
|
403 |
+
color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True)
|
404 |
+
|
405 |
+
replicate = cfgv.get('replicate', 1)
|
406 |
+
conditioning = cfgv.conditioning * replicate
|
407 |
+
conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
|
408 |
+
seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]
|
409 |
+
|
410 |
+
for ci, seedi in zip(conditioning_local, seed_increment):
|
411 |
+
if ci == 'SKIP':
|
412 |
+
continue
|
413 |
+
|
414 |
+
draw_filename = osp.splitext(osp.basename(ci))[0]
|
415 |
+
|
416 |
+
if fix_seed:
|
417 |
+
np.random.seed(cfg.env.rnd_seed + seedi)
|
418 |
+
torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
|
419 |
+
suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
|
420 |
+
else:
|
421 |
+
suffixi = suffix
|
422 |
+
|
423 |
+
if with_ema:
|
424 |
+
with netm.ema_scope():
|
425 |
+
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
|
426 |
+
else:
|
427 |
+
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
|
428 |
+
|
429 |
+
demo_image = latent2im(netm, x)
|
430 |
+
if color_adj:
|
431 |
+
x_adj = []
|
432 |
+
for demoi in demo_image:
|
433 |
+
color_adj_f = color_adjust(ref_from=demoi, ref_to=ci)
|
434 |
+
xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple)
|
435 |
+
x_adj.append(xi_adj)
|
436 |
+
demo_image = x_adj
|
437 |
+
self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)
|
438 |
+
|
439 |
+
if eval_cnt is not None:
|
440 |
+
print_log('Demo printed for {}'.format(eval_cnt))
|
441 |
+
return {}
|
lib/log_service.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timeit
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import shutil
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.distributed as dist
|
10 |
+
from .cfg_holder import cfg_unique_holder as cfguh
|
11 |
+
from . import sync
|
12 |
+
|
13 |
+
print_console_local_rank0_only = True
|
14 |
+
|
15 |
+
def print_log(*console_info):
|
16 |
+
local_rank = sync.get_rank('local')
|
17 |
+
if print_console_local_rank0_only and (local_rank!=0):
|
18 |
+
return
|
19 |
+
console_info = [str(i) for i in console_info]
|
20 |
+
console_info = ' '.join(console_info)
|
21 |
+
print(console_info)
|
22 |
+
|
23 |
+
if local_rank!=0:
|
24 |
+
return
|
25 |
+
|
26 |
+
log_file = None
|
27 |
+
try:
|
28 |
+
log_file = cfguh().cfg.train.log_file
|
29 |
+
except:
|
30 |
+
try:
|
31 |
+
log_file = cfguh().cfg.eval.log_file
|
32 |
+
except:
|
33 |
+
return
|
34 |
+
if log_file is not None:
|
35 |
+
with open(log_file, 'a') as f:
|
36 |
+
f.write(console_info + '\n')
|
37 |
+
|
38 |
+
class distributed_log_manager(object):
|
39 |
+
def __init__(self):
|
40 |
+
self.sum = {}
|
41 |
+
self.cnt = {}
|
42 |
+
self.time_check = timeit.default_timer()
|
43 |
+
|
44 |
+
cfgt = cfguh().cfg.train
|
45 |
+
use_tensorboard = getattr(cfgt, 'log_tensorboard', False)
|
46 |
+
|
47 |
+
self.ddp = sync.is_ddp()
|
48 |
+
self.rank = sync.get_rank('local')
|
49 |
+
self.world_size = sync.get_world_size('local')
|
50 |
+
|
51 |
+
self.tb = None
|
52 |
+
if use_tensorboard and (self.rank==0):
|
53 |
+
import tensorboardX
|
54 |
+
monitoring_dir = osp.join(cfguh().cfg.train.log_dir, 'tensorboard')
|
55 |
+
self.tb = tensorboardX.SummaryWriter(osp.join(monitoring_dir))
|
56 |
+
|
57 |
+
def accumulate(self, n, **data):
|
58 |
+
if n < 0:
|
59 |
+
raise ValueError
|
60 |
+
|
61 |
+
for itemn, di in data.items():
|
62 |
+
if itemn in self.sum:
|
63 |
+
self.sum[itemn] += di * n
|
64 |
+
self.cnt[itemn] += n
|
65 |
+
else:
|
66 |
+
self.sum[itemn] = di * n
|
67 |
+
self.cnt[itemn] = n
|
68 |
+
|
69 |
+
def get_mean_value_dict(self):
|
70 |
+
value_gather = [
|
71 |
+
self.sum[itemn]/self.cnt[itemn] \
|
72 |
+
for itemn in sorted(self.sum.keys()) ]
|
73 |
+
|
74 |
+
value_gather_tensor = torch.FloatTensor(value_gather).to(self.rank)
|
75 |
+
if self.ddp:
|
76 |
+
dist.all_reduce(value_gather_tensor, op=dist.ReduceOp.SUM)
|
77 |
+
value_gather_tensor /= self.world_size
|
78 |
+
|
79 |
+
mean = {}
|
80 |
+
for idx, itemn in enumerate(sorted(self.sum.keys())):
|
81 |
+
mean[itemn] = value_gather_tensor[idx].item()
|
82 |
+
return mean
|
83 |
+
|
84 |
+
def tensorboard_log(self, step, data, mode='train', **extra):
|
85 |
+
if self.tb is None:
|
86 |
+
return
|
87 |
+
if mode == 'train':
|
88 |
+
self.tb.add_scalar('other/epochn', extra['epochn'], step)
|
89 |
+
if 'lr' in extra:
|
90 |
+
self.tb.add_scalar('other/lr', extra['lr'], step)
|
91 |
+
for itemn, di in data.items():
|
92 |
+
if itemn.find('loss') == 0:
|
93 |
+
self.tb.add_scalar('loss/'+itemn, di, step)
|
94 |
+
elif itemn == 'Loss':
|
95 |
+
self.tb.add_scalar('Loss', di, step)
|
96 |
+
else:
|
97 |
+
self.tb.add_scalar('other/'+itemn, di, step)
|
98 |
+
elif mode == 'eval':
|
99 |
+
if isinstance(data, dict):
|
100 |
+
for itemn, di in data.items():
|
101 |
+
self.tb.add_scalar('eval/'+itemn, di, step)
|
102 |
+
else:
|
103 |
+
self.tb.add_scalar('eval', data, step)
|
104 |
+
return
|
105 |
+
|
106 |
+
def train_summary(self, itern, epochn, samplen, lr, tbstep=None):
|
107 |
+
console_info = [
|
108 |
+
'Iter:{}'.format(itern),
|
109 |
+
'Epoch:{}'.format(epochn),
|
110 |
+
'Sample:{}'.format(samplen),]
|
111 |
+
|
112 |
+
if lr is not None:
|
113 |
+
console_info += ['LR:{:.4E}'.format(lr)]
|
114 |
+
|
115 |
+
mean = self.get_mean_value_dict()
|
116 |
+
|
117 |
+
tbstep = itern if tbstep is None else tbstep
|
118 |
+
self.tensorboard_log(
|
119 |
+
tbstep, mean, mode='train',
|
120 |
+
itern=itern, epochn=epochn, lr=lr)
|
121 |
+
|
122 |
+
loss = mean.pop('Loss')
|
123 |
+
mean_info = ['Loss:{:.4f}'.format(loss)] + [
|
124 |
+
'{}:{:.4f}'.format(itemn, mean[itemn]) \
|
125 |
+
for itemn in sorted(mean.keys()) \
|
126 |
+
if itemn.find('loss') == 0
|
127 |
+
]
|
128 |
+
console_info += mean_info
|
129 |
+
console_info.append('Time:{:.2f}s'.format(
|
130 |
+
timeit.default_timer() - self.time_check))
|
131 |
+
return ' , '.join(console_info)
|
132 |
+
|
133 |
+
def clear(self):
|
134 |
+
self.sum = {}
|
135 |
+
self.cnt = {}
|
136 |
+
self.time_check = timeit.default_timer()
|
137 |
+
|
138 |
+
def tensorboard_close(self):
|
139 |
+
if self.tb is not None:
|
140 |
+
self.tb.close()
|
141 |
+
|
142 |
+
# ----- also include some small utils -----
|
143 |
+
|
144 |
+
def torch_to_numpy(*argv):
|
145 |
+
if len(argv) > 1:
|
146 |
+
data = list(argv)
|
147 |
+
else:
|
148 |
+
data = argv[0]
|
149 |
+
|
150 |
+
if isinstance(data, torch.Tensor):
|
151 |
+
return data.to('cpu').detach().numpy()
|
152 |
+
|
153 |
+
elif isinstance(data, (list, tuple)):
|
154 |
+
out = []
|
155 |
+
for di in data:
|
156 |
+
out.append(torch_to_numpy(di))
|
157 |
+
return out
|
158 |
+
|
159 |
+
elif isinstance(data, dict):
|
160 |
+
out = {}
|
161 |
+
for ni, di in data.items():
|
162 |
+
out[ni] = torch_to_numpy(di)
|
163 |
+
return out
|
164 |
+
|
165 |
+
else:
|
166 |
+
return data
|
lib/model_zoo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.get_model import get_model
|
2 |
+
from .common.get_optimizer import get_optimizer
|
3 |
+
from .common.get_scheduler import get_scheduler
|
4 |
+
from .common.utils import get_unit
|
lib/model_zoo/attention.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from .diffusion_utils import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return{el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = nn.Sequential(
|
53 |
+
nn.Linear(dim, inner_dim),
|
54 |
+
nn.GELU()
|
55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
56 |
+
|
57 |
+
self.net = nn.Sequential(
|
58 |
+
project_in,
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Linear(inner_dim, dim_out)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.net(x)
|
65 |
+
|
66 |
+
|
67 |
+
def zero_module(module):
|
68 |
+
"""
|
69 |
+
Zero out the parameters of a module and return it.
|
70 |
+
"""
|
71 |
+
for p in module.parameters():
|
72 |
+
p.detach().zero_()
|
73 |
+
return module
|
74 |
+
|
75 |
+
|
76 |
+
def Normalize(in_channels):
|
77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
|
79 |
+
|
80 |
+
class LinearAttention(nn.Module):
|
81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
+
super().__init__()
|
83 |
+
self.heads = heads
|
84 |
+
hidden_dim = dim_head * heads
|
85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
b, c, h, w = x.shape
|
90 |
+
qkv = self.to_qkv(x)
|
91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
+
k = k.softmax(dim=-1)
|
93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
+
return self.to_out(out)
|
97 |
+
|
98 |
+
|
99 |
+
class SpatialSelfAttention(nn.Module):
|
100 |
+
def __init__(self, in_channels):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
|
104 |
+
self.norm = Normalize(in_channels)
|
105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
106 |
+
in_channels,
|
107 |
+
kernel_size=1,
|
108 |
+
stride=1,
|
109 |
+
padding=0)
|
110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
111 |
+
in_channels,
|
112 |
+
kernel_size=1,
|
113 |
+
stride=1,
|
114 |
+
padding=0)
|
115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
116 |
+
in_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
+
in_channels,
|
122 |
+
kernel_size=1,
|
123 |
+
stride=1,
|
124 |
+
padding=0)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
h_ = x
|
128 |
+
h_ = self.norm(h_)
|
129 |
+
q = self.q(h_)
|
130 |
+
k = self.k(h_)
|
131 |
+
v = self.v(h_)
|
132 |
+
|
133 |
+
# compute attention
|
134 |
+
b,c,h,w = q.shape
|
135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
+
|
139 |
+
w_ = w_ * (int(c)**(-0.5))
|
140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
+
|
142 |
+
# attend to values
|
143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
+
h_ = self.proj_out(h_)
|
148 |
+
|
149 |
+
return x+h_
|
150 |
+
|
151 |
+
|
152 |
+
class CrossAttention(nn.Module):
|
153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
154 |
+
super().__init__()
|
155 |
+
inner_dim = dim_head * heads
|
156 |
+
context_dim = default(context_dim, query_dim)
|
157 |
+
|
158 |
+
self.scale = dim_head ** -0.5
|
159 |
+
self.heads = heads
|
160 |
+
|
161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
nn.Linear(inner_dim, query_dim),
|
167 |
+
nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x, context=None, mask=None):
|
171 |
+
h = self.heads
|
172 |
+
|
173 |
+
q = self.to_q(x)
|
174 |
+
context = default(context, x)
|
175 |
+
k = self.to_k(context)
|
176 |
+
v = self.to_v(context)
|
177 |
+
|
178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
179 |
+
|
180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
181 |
+
|
182 |
+
if exists(mask):
|
183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
187 |
+
|
188 |
+
# attention, what we cannot get enough of
|
189 |
+
attn = sim.softmax(dim=-1)
|
190 |
+
|
191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
193 |
+
return self.to_out(out)
|
194 |
+
|
195 |
+
|
196 |
+
class BasicTransformerBlock(nn.Module):
|
197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
198 |
+
disable_self_attn=False):
|
199 |
+
super().__init__()
|
200 |
+
self.disable_self_attn = disable_self_attn
|
201 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
202 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
203 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
204 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
205 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
206 |
+
self.norm1 = nn.LayerNorm(dim)
|
207 |
+
self.norm2 = nn.LayerNorm(dim)
|
208 |
+
self.norm3 = nn.LayerNorm(dim)
|
209 |
+
self.checkpoint = checkpoint
|
210 |
+
|
211 |
+
def forward(self, x, context=None):
|
212 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
213 |
+
|
214 |
+
def _forward(self, x, context=None):
|
215 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
216 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
217 |
+
x = self.ff(self.norm3(x)) + x
|
218 |
+
return x
|
219 |
+
|
220 |
+
|
221 |
+
class SpatialTransformer(nn.Module):
|
222 |
+
"""
|
223 |
+
Transformer block for image-like data.
|
224 |
+
First, project the input (aka embedding)
|
225 |
+
and reshape to b, t, d.
|
226 |
+
Then apply standard transformer action.
|
227 |
+
Finally, reshape to image
|
228 |
+
"""
|
229 |
+
def __init__(self, in_channels, n_heads, d_head,
|
230 |
+
depth=1, dropout=0., context_dim=None,
|
231 |
+
disable_self_attn=False):
|
232 |
+
super().__init__()
|
233 |
+
self.in_channels = in_channels
|
234 |
+
inner_dim = n_heads * d_head
|
235 |
+
self.norm = Normalize(in_channels)
|
236 |
+
|
237 |
+
self.proj_in = nn.Conv2d(in_channels,
|
238 |
+
inner_dim,
|
239 |
+
kernel_size=1,
|
240 |
+
stride=1,
|
241 |
+
padding=0)
|
242 |
+
|
243 |
+
self.transformer_blocks = nn.ModuleList(
|
244 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
245 |
+
disable_self_attn=disable_self_attn)
|
246 |
+
for d in range(depth)]
|
247 |
+
)
|
248 |
+
|
249 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
250 |
+
in_channels,
|
251 |
+
kernel_size=1,
|
252 |
+
stride=1,
|
253 |
+
padding=0))
|
254 |
+
|
255 |
+
def forward(self, x, context=None):
|
256 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
257 |
+
b, c, h, w = x.shape
|
258 |
+
x_in = x
|
259 |
+
x = self.norm(x)
|
260 |
+
x = self.proj_in(x)
|
261 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
262 |
+
for block in self.transformer_blocks:
|
263 |
+
x = block(x, context=context)
|
264 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
265 |
+
x = self.proj_out(x)
|
266 |
+
return x + x_in
|
267 |
+
|
268 |
+
|
269 |
+
##########################
|
270 |
+
# transformer no context #
|
271 |
+
##########################
|
272 |
+
|
273 |
+
class BasicTransformerBlockNoContext(nn.Module):
|
274 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., gated_ff=True, checkpoint=True):
|
275 |
+
super().__init__()
|
276 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
|
277 |
+
dropout=dropout, context_dim=None)
|
278 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
279 |
+
self.attn2 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
|
280 |
+
dropout=dropout, context_dim=None)
|
281 |
+
self.norm1 = nn.LayerNorm(dim)
|
282 |
+
self.norm2 = nn.LayerNorm(dim)
|
283 |
+
self.norm3 = nn.LayerNorm(dim)
|
284 |
+
self.checkpoint = checkpoint
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
|
288 |
+
|
289 |
+
def _forward(self, x):
|
290 |
+
x = self.attn1(self.norm1(x)) + x
|
291 |
+
x = self.attn2(self.norm2(x)) + x
|
292 |
+
x = self.ff(self.norm3(x)) + x
|
293 |
+
return x
|
294 |
+
|
295 |
+
class SpatialTransformerNoContext(nn.Module):
|
296 |
+
"""
|
297 |
+
Transformer block for image-like data.
|
298 |
+
First, project the input (aka embedding)
|
299 |
+
and reshape to b, t, d.
|
300 |
+
Then apply standard transformer action.
|
301 |
+
Finally, reshape to image
|
302 |
+
"""
|
303 |
+
def __init__(self, in_channels, n_heads, d_head,
|
304 |
+
depth=1, dropout=0.,):
|
305 |
+
super().__init__()
|
306 |
+
self.in_channels = in_channels
|
307 |
+
inner_dim = n_heads * d_head
|
308 |
+
self.norm = Normalize(in_channels)
|
309 |
+
|
310 |
+
self.proj_in = nn.Conv2d(in_channels,
|
311 |
+
inner_dim,
|
312 |
+
kernel_size=1,
|
313 |
+
stride=1,
|
314 |
+
padding=0)
|
315 |
+
|
316 |
+
self.transformer_blocks = nn.ModuleList(
|
317 |
+
[BasicTransformerBlockNoContext(inner_dim, n_heads, d_head, dropout=dropout)
|
318 |
+
for d in range(depth)]
|
319 |
+
)
|
320 |
+
|
321 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
322 |
+
in_channels,
|
323 |
+
kernel_size=1,
|
324 |
+
stride=1,
|
325 |
+
padding=0))
|
326 |
+
|
327 |
+
def forward(self, x):
|
328 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
329 |
+
b, c, h, w = x.shape
|
330 |
+
x_in = x
|
331 |
+
x = self.norm(x)
|
332 |
+
x = self.proj_in(x)
|
333 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
334 |
+
for block in self.transformer_blocks:
|
335 |
+
x = block(x)
|
336 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
337 |
+
x = self.proj_out(x)
|
338 |
+
return x + x_in
|
339 |
+
|
340 |
+
|
341 |
+
#######################################
|
342 |
+
# Spatial Transformer with Two Branch #
|
343 |
+
#######################################
|
344 |
+
|
345 |
+
class DualSpatialTransformer(nn.Module):
|
346 |
+
def __init__(self, in_channels, n_heads, d_head,
|
347 |
+
depth=1, dropout=0., context_dim=None,
|
348 |
+
disable_self_attn=False):
|
349 |
+
super().__init__()
|
350 |
+
self.in_channels = in_channels
|
351 |
+
inner_dim = n_heads * d_head
|
352 |
+
|
353 |
+
# First crossattn
|
354 |
+
self.norm_0 = Normalize(in_channels)
|
355 |
+
self.proj_in_0 = nn.Conv2d(
|
356 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
357 |
+
self.transformer_blocks_0 = nn.ModuleList(
|
358 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
359 |
+
disable_self_attn=disable_self_attn)
|
360 |
+
for d in range(depth)]
|
361 |
+
)
|
362 |
+
self.proj_out_0 = zero_module(nn.Conv2d(
|
363 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
364 |
+
|
365 |
+
# Second crossattn
|
366 |
+
self.norm_1 = Normalize(in_channels)
|
367 |
+
self.proj_in_1 = nn.Conv2d(
|
368 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
369 |
+
self.transformer_blocks_1 = nn.ModuleList(
|
370 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
371 |
+
disable_self_attn=disable_self_attn)
|
372 |
+
for d in range(depth)]
|
373 |
+
)
|
374 |
+
self.proj_out_1 = zero_module(nn.Conv2d(
|
375 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
376 |
+
|
377 |
+
def forward(self, x, context=None, which=None):
|
378 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
379 |
+
b, c, h, w = x.shape
|
380 |
+
x_in = x
|
381 |
+
if which==0:
|
382 |
+
norm, proj_in, blocks, proj_out = \
|
383 |
+
self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
384 |
+
elif which==1:
|
385 |
+
norm, proj_in, blocks, proj_out = \
|
386 |
+
self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
387 |
+
else:
|
388 |
+
# assert False, 'DualSpatialTransformer forward with a invalid which branch!'
|
389 |
+
# import numpy.random as npr
|
390 |
+
# rwhich = 0 if npr.rand() < which else 1
|
391 |
+
# context = context[rwhich]
|
392 |
+
# if rwhich==0:
|
393 |
+
# norm, proj_in, blocks, proj_out = \
|
394 |
+
# self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
395 |
+
# elif rwhich==1:
|
396 |
+
# norm, proj_in, blocks, proj_out = \
|
397 |
+
# self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
398 |
+
|
399 |
+
# import numpy.random as npr
|
400 |
+
# rwhich = 0 if npr.rand() < 0.33 else 1
|
401 |
+
# if rwhich==0:
|
402 |
+
# context = context[rwhich]
|
403 |
+
# norm, proj_in, blocks, proj_out = \
|
404 |
+
# self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
405 |
+
# else:
|
406 |
+
|
407 |
+
norm, proj_in, blocks, proj_out = \
|
408 |
+
self.norm_0, self.proj_in_0, self.transformer_blocks_0, self.proj_out_0
|
409 |
+
x0 = norm(x)
|
410 |
+
x0 = proj_in(x0)
|
411 |
+
x0 = rearrange(x0, 'b c h w -> b (h w) c').contiguous()
|
412 |
+
for block in blocks:
|
413 |
+
x0 = block(x0, context=context[0])
|
414 |
+
x0 = rearrange(x0, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
415 |
+
x0 = proj_out(x0)
|
416 |
+
|
417 |
+
norm, proj_in, blocks, proj_out = \
|
418 |
+
self.norm_1, self.proj_in_1, self.transformer_blocks_1, self.proj_out_1
|
419 |
+
x1 = norm(x)
|
420 |
+
x1 = proj_in(x1)
|
421 |
+
x1 = rearrange(x1, 'b c h w -> b (h w) c').contiguous()
|
422 |
+
for block in blocks:
|
423 |
+
x1 = block(x1, context=context[1])
|
424 |
+
x1 = rearrange(x1, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
425 |
+
x1 = proj_out(x1)
|
426 |
+
return x0*which + x1*(1-which) + x_in
|
427 |
+
|
428 |
+
x = norm(x)
|
429 |
+
x = proj_in(x)
|
430 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
431 |
+
for block in blocks:
|
432 |
+
x = block(x, context=context)
|
433 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
434 |
+
x = proj_out(x)
|
435 |
+
return x + x_in
|
lib/model_zoo/autoencoder.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from lib.model_zoo.common.get_model import get_model, register
|
6 |
+
|
7 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
8 |
+
|
9 |
+
from .diffusion_modules import Encoder, Decoder
|
10 |
+
from .distributions import DiagonalGaussianDistribution
|
11 |
+
|
12 |
+
|
13 |
+
class VQModel(nn.Module):
|
14 |
+
def __init__(self,
|
15 |
+
ddconfig,
|
16 |
+
lossconfig,
|
17 |
+
n_embed,
|
18 |
+
embed_dim,
|
19 |
+
ckpt_path=None,
|
20 |
+
ignore_keys=[],
|
21 |
+
image_key="image",
|
22 |
+
colorize_nlabels=None,
|
23 |
+
monitor=None,
|
24 |
+
batch_resize_range=None,
|
25 |
+
scheduler_config=None,
|
26 |
+
lr_g_factor=1.0,
|
27 |
+
remap=None,
|
28 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
29 |
+
use_ema=False
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
self.embed_dim = embed_dim
|
33 |
+
self.n_embed = n_embed
|
34 |
+
self.image_key = image_key
|
35 |
+
self.encoder = Encoder(**ddconfig)
|
36 |
+
self.decoder = Decoder(**ddconfig)
|
37 |
+
self.loss = instantiate_from_config(lossconfig)
|
38 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
39 |
+
remap=remap,
|
40 |
+
sane_index_shape=sane_index_shape)
|
41 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
42 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
43 |
+
if colorize_nlabels is not None:
|
44 |
+
assert type(colorize_nlabels)==int
|
45 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
46 |
+
if monitor is not None:
|
47 |
+
self.monitor = monitor
|
48 |
+
self.batch_resize_range = batch_resize_range
|
49 |
+
if self.batch_resize_range is not None:
|
50 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
51 |
+
|
52 |
+
self.use_ema = use_ema
|
53 |
+
if self.use_ema:
|
54 |
+
self.model_ema = LitEma(self)
|
55 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
56 |
+
|
57 |
+
if ckpt_path is not None:
|
58 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
59 |
+
self.scheduler_config = scheduler_config
|
60 |
+
self.lr_g_factor = lr_g_factor
|
61 |
+
|
62 |
+
@contextmanager
|
63 |
+
def ema_scope(self, context=None):
|
64 |
+
if self.use_ema:
|
65 |
+
self.model_ema.store(self.parameters())
|
66 |
+
self.model_ema.copy_to(self)
|
67 |
+
if context is not None:
|
68 |
+
print(f"{context}: Switched to EMA weights")
|
69 |
+
try:
|
70 |
+
yield None
|
71 |
+
finally:
|
72 |
+
if self.use_ema:
|
73 |
+
self.model_ema.restore(self.parameters())
|
74 |
+
if context is not None:
|
75 |
+
print(f"{context}: Restored training weights")
|
76 |
+
|
77 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
78 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
79 |
+
keys = list(sd.keys())
|
80 |
+
for k in keys:
|
81 |
+
for ik in ignore_keys:
|
82 |
+
if k.startswith(ik):
|
83 |
+
print("Deleting key {} from state_dict.".format(k))
|
84 |
+
del sd[k]
|
85 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
86 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
87 |
+
if len(missing) > 0:
|
88 |
+
print(f"Missing Keys: {missing}")
|
89 |
+
print(f"Unexpected Keys: {unexpected}")
|
90 |
+
|
91 |
+
def on_train_batch_end(self, *args, **kwargs):
|
92 |
+
if self.use_ema:
|
93 |
+
self.model_ema(self)
|
94 |
+
|
95 |
+
def encode(self, x):
|
96 |
+
h = self.encoder(x)
|
97 |
+
h = self.quant_conv(h)
|
98 |
+
quant, emb_loss, info = self.quantize(h)
|
99 |
+
return quant, emb_loss, info
|
100 |
+
|
101 |
+
def encode_to_prequant(self, x):
|
102 |
+
h = self.encoder(x)
|
103 |
+
h = self.quant_conv(h)
|
104 |
+
return h
|
105 |
+
|
106 |
+
def decode(self, quant):
|
107 |
+
quant = self.post_quant_conv(quant)
|
108 |
+
dec = self.decoder(quant)
|
109 |
+
return dec
|
110 |
+
|
111 |
+
def decode_code(self, code_b):
|
112 |
+
quant_b = self.quantize.embed_code(code_b)
|
113 |
+
dec = self.decode(quant_b)
|
114 |
+
return dec
|
115 |
+
|
116 |
+
def forward(self, input, return_pred_indices=False):
|
117 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
118 |
+
dec = self.decode(quant)
|
119 |
+
if return_pred_indices:
|
120 |
+
return dec, diff, ind
|
121 |
+
return dec, diff
|
122 |
+
|
123 |
+
def get_input(self, batch, k):
|
124 |
+
x = batch[k]
|
125 |
+
if len(x.shape) == 3:
|
126 |
+
x = x[..., None]
|
127 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
128 |
+
if self.batch_resize_range is not None:
|
129 |
+
lower_size = self.batch_resize_range[0]
|
130 |
+
upper_size = self.batch_resize_range[1]
|
131 |
+
if self.global_step <= 4:
|
132 |
+
# do the first few batches with max size to avoid later oom
|
133 |
+
new_resize = upper_size
|
134 |
+
else:
|
135 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
136 |
+
if new_resize != x.shape[2]:
|
137 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
138 |
+
x = x.detach()
|
139 |
+
return x
|
140 |
+
|
141 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
142 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
143 |
+
# try not to fool the heuristics
|
144 |
+
x = self.get_input(batch, self.image_key)
|
145 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
146 |
+
|
147 |
+
if optimizer_idx == 0:
|
148 |
+
# autoencode
|
149 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
150 |
+
last_layer=self.get_last_layer(), split="train",
|
151 |
+
predicted_indices=ind)
|
152 |
+
|
153 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
154 |
+
return aeloss
|
155 |
+
|
156 |
+
if optimizer_idx == 1:
|
157 |
+
# discriminator
|
158 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
159 |
+
last_layer=self.get_last_layer(), split="train")
|
160 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
161 |
+
return discloss
|
162 |
+
|
163 |
+
def validation_step(self, batch, batch_idx):
|
164 |
+
log_dict = self._validation_step(batch, batch_idx)
|
165 |
+
with self.ema_scope():
|
166 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
167 |
+
return log_dict
|
168 |
+
|
169 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
170 |
+
x = self.get_input(batch, self.image_key)
|
171 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
172 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
173 |
+
self.global_step,
|
174 |
+
last_layer=self.get_last_layer(),
|
175 |
+
split="val"+suffix,
|
176 |
+
predicted_indices=ind
|
177 |
+
)
|
178 |
+
|
179 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
180 |
+
self.global_step,
|
181 |
+
last_layer=self.get_last_layer(),
|
182 |
+
split="val"+suffix,
|
183 |
+
predicted_indices=ind
|
184 |
+
)
|
185 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
186 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
187 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
188 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
189 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
190 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
191 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
192 |
+
self.log_dict(log_dict_ae)
|
193 |
+
self.log_dict(log_dict_disc)
|
194 |
+
return self.log_dict
|
195 |
+
|
196 |
+
def configure_optimizers(self):
|
197 |
+
lr_d = self.learning_rate
|
198 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
199 |
+
print("lr_d", lr_d)
|
200 |
+
print("lr_g", lr_g)
|
201 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
202 |
+
list(self.decoder.parameters())+
|
203 |
+
list(self.quantize.parameters())+
|
204 |
+
list(self.quant_conv.parameters())+
|
205 |
+
list(self.post_quant_conv.parameters()),
|
206 |
+
lr=lr_g, betas=(0.5, 0.9))
|
207 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
208 |
+
lr=lr_d, betas=(0.5, 0.9))
|
209 |
+
|
210 |
+
if self.scheduler_config is not None:
|
211 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
212 |
+
|
213 |
+
print("Setting up LambdaLR scheduler...")
|
214 |
+
scheduler = [
|
215 |
+
{
|
216 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
217 |
+
'interval': 'step',
|
218 |
+
'frequency': 1
|
219 |
+
},
|
220 |
+
{
|
221 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
222 |
+
'interval': 'step',
|
223 |
+
'frequency': 1
|
224 |
+
},
|
225 |
+
]
|
226 |
+
return [opt_ae, opt_disc], scheduler
|
227 |
+
return [opt_ae, opt_disc], []
|
228 |
+
|
229 |
+
def get_last_layer(self):
|
230 |
+
return self.decoder.conv_out.weight
|
231 |
+
|
232 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
233 |
+
log = dict()
|
234 |
+
x = self.get_input(batch, self.image_key)
|
235 |
+
x = x.to(self.device)
|
236 |
+
if only_inputs:
|
237 |
+
log["inputs"] = x
|
238 |
+
return log
|
239 |
+
xrec, _ = self(x)
|
240 |
+
if x.shape[1] > 3:
|
241 |
+
# colorize with random projection
|
242 |
+
assert xrec.shape[1] > 3
|
243 |
+
x = self.to_rgb(x)
|
244 |
+
xrec = self.to_rgb(xrec)
|
245 |
+
log["inputs"] = x
|
246 |
+
log["reconstructions"] = xrec
|
247 |
+
if plot_ema:
|
248 |
+
with self.ema_scope():
|
249 |
+
xrec_ema, _ = self(x)
|
250 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
251 |
+
log["reconstructions_ema"] = xrec_ema
|
252 |
+
return log
|
253 |
+
|
254 |
+
def to_rgb(self, x):
|
255 |
+
assert self.image_key == "segmentation"
|
256 |
+
if not hasattr(self, "colorize"):
|
257 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
258 |
+
x = F.conv2d(x, weight=self.colorize)
|
259 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
260 |
+
return x
|
261 |
+
|
262 |
+
|
263 |
+
class VQModelInterface(VQModel):
|
264 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
265 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
266 |
+
self.embed_dim = embed_dim
|
267 |
+
|
268 |
+
def encode(self, x):
|
269 |
+
h = self.encoder(x)
|
270 |
+
h = self.quant_conv(h)
|
271 |
+
return h
|
272 |
+
|
273 |
+
def decode(self, h, force_not_quantize=False):
|
274 |
+
# also go through quantization layer
|
275 |
+
if not force_not_quantize:
|
276 |
+
quant, emb_loss, info = self.quantize(h)
|
277 |
+
else:
|
278 |
+
quant = h
|
279 |
+
quant = self.post_quant_conv(quant)
|
280 |
+
dec = self.decoder(quant)
|
281 |
+
return dec
|
282 |
+
|
283 |
+
|
284 |
+
@register('autoencoderkl')
|
285 |
+
class AutoencoderKL(nn.Module):
|
286 |
+
def __init__(self,
|
287 |
+
ddconfig,
|
288 |
+
lossconfig,
|
289 |
+
embed_dim,
|
290 |
+
ckpt_path=None,
|
291 |
+
ignore_keys=[],
|
292 |
+
image_key="image",
|
293 |
+
colorize_nlabels=None,
|
294 |
+
monitor=None,):
|
295 |
+
super().__init__()
|
296 |
+
self.image_key = image_key
|
297 |
+
self.encoder = Encoder(**ddconfig)
|
298 |
+
self.decoder = Decoder(**ddconfig)
|
299 |
+
assert ddconfig["double_z"]
|
300 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
301 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
302 |
+
self.embed_dim = embed_dim
|
303 |
+
if colorize_nlabels is not None:
|
304 |
+
assert type(colorize_nlabels)==int
|
305 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
306 |
+
if monitor is not None:
|
307 |
+
self.monitor = monitor
|
308 |
+
|
309 |
+
def encode(self, x):
|
310 |
+
h = self.encoder(x)
|
311 |
+
moments = self.quant_conv(h)
|
312 |
+
posterior = DiagonalGaussianDistribution(moments)
|
313 |
+
return posterior
|
314 |
+
|
315 |
+
def decode(self, z):
|
316 |
+
z = self.post_quant_conv(z)
|
317 |
+
dec = self.decoder(z)
|
318 |
+
return dec
|
319 |
+
|
320 |
+
def forward(self, input, sample_posterior=True):
|
321 |
+
posterior = self.encode(input)
|
322 |
+
if sample_posterior:
|
323 |
+
z = posterior.sample()
|
324 |
+
else:
|
325 |
+
z = posterior.mode()
|
326 |
+
dec = self.decode(z)
|
327 |
+
return dec, posterior
|
328 |
+
|
329 |
+
def get_input(self, batch, k):
|
330 |
+
x = batch[k]
|
331 |
+
if len(x.shape) == 3:
|
332 |
+
x = x[..., None]
|
333 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
334 |
+
return x
|
335 |
+
|
336 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
337 |
+
inputs = self.get_input(batch, self.image_key)
|
338 |
+
reconstructions, posterior = self(inputs)
|
339 |
+
|
340 |
+
if optimizer_idx == 0:
|
341 |
+
# train encoder+decoder+logvar
|
342 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
343 |
+
last_layer=self.get_last_layer(), split="train")
|
344 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
345 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
346 |
+
return aeloss
|
347 |
+
|
348 |
+
if optimizer_idx == 1:
|
349 |
+
# train the discriminator
|
350 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
351 |
+
last_layer=self.get_last_layer(), split="train")
|
352 |
+
|
353 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
354 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
355 |
+
return discloss
|
356 |
+
|
357 |
+
def validation_step(self, batch, batch_idx):
|
358 |
+
inputs = self.get_input(batch, self.image_key)
|
359 |
+
reconstructions, posterior = self(inputs)
|
360 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
361 |
+
last_layer=self.get_last_layer(), split="val")
|
362 |
+
|
363 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
364 |
+
last_layer=self.get_last_layer(), split="val")
|
365 |
+
|
366 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
367 |
+
self.log_dict(log_dict_ae)
|
368 |
+
self.log_dict(log_dict_disc)
|
369 |
+
return self.log_dict
|
370 |
+
|
371 |
+
def configure_optimizers(self):
|
372 |
+
lr = self.learning_rate
|
373 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
374 |
+
list(self.decoder.parameters())+
|
375 |
+
list(self.quant_conv.parameters())+
|
376 |
+
list(self.post_quant_conv.parameters()),
|
377 |
+
lr=lr, betas=(0.5, 0.9))
|
378 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
379 |
+
lr=lr, betas=(0.5, 0.9))
|
380 |
+
return [opt_ae, opt_disc], []
|
381 |
+
|
382 |
+
def get_last_layer(self):
|
383 |
+
return self.decoder.conv_out.weight
|
384 |
+
|
385 |
+
@torch.no_grad()
|
386 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
387 |
+
log = dict()
|
388 |
+
x = self.get_input(batch, self.image_key)
|
389 |
+
x = x.to(self.device)
|
390 |
+
if not only_inputs:
|
391 |
+
xrec, posterior = self(x)
|
392 |
+
if x.shape[1] > 3:
|
393 |
+
# colorize with random projection
|
394 |
+
assert xrec.shape[1] > 3
|
395 |
+
x = self.to_rgb(x)
|
396 |
+
xrec = self.to_rgb(xrec)
|
397 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
398 |
+
log["reconstructions"] = xrec
|
399 |
+
log["inputs"] = x
|
400 |
+
return log
|
401 |
+
|
402 |
+
def to_rgb(self, x):
|
403 |
+
assert self.image_key == "segmentation"
|
404 |
+
if not hasattr(self, "colorize"):
|
405 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
406 |
+
x = F.conv2d(x, weight=self.colorize)
|
407 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
408 |
+
return x
|
409 |
+
|
410 |
+
|
411 |
+
class IdentityFirstStage(nn.Module):
|
412 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
413 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
414 |
+
super().__init__()
|
415 |
+
|
416 |
+
def encode(self, x, *args, **kwargs):
|
417 |
+
return x
|
418 |
+
|
419 |
+
def decode(self, x, *args, **kwargs):
|
420 |
+
return x
|
421 |
+
|
422 |
+
def quantize(self, x, *args, **kwargs):
|
423 |
+
if self.vq_interface:
|
424 |
+
return x, None, [None, None, None]
|
425 |
+
return x
|
426 |
+
|
427 |
+
def forward(self, x, *args, **kwargs):
|
428 |
+
return x
|
lib/model_zoo/bert.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
# from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
6 |
+
|
7 |
+
|
8 |
+
class AbstractEncoder(nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
def encode(self, *args, **kwargs):
|
13 |
+
raise NotImplementedError
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
class ClassEmbedder(nn.Module):
|
18 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
19 |
+
super().__init__()
|
20 |
+
self.key = key
|
21 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
22 |
+
|
23 |
+
def forward(self, batch, key=None):
|
24 |
+
if key is None:
|
25 |
+
key = self.key
|
26 |
+
# this is for use in crossattn
|
27 |
+
c = batch[key][:, None]
|
28 |
+
c = self.embedding(c)
|
29 |
+
return c
|
30 |
+
|
31 |
+
|
32 |
+
class TransformerEmbedder(AbstractEncoder):
|
33 |
+
"""Some transformer encoder layers"""
|
34 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77):
|
35 |
+
super().__init__()
|
36 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
37 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
38 |
+
|
39 |
+
def forward(self, tokens):
|
40 |
+
z = self.transformer(tokens, return_embeddings=True)
|
41 |
+
return z
|
42 |
+
|
43 |
+
def encode(self, x):
|
44 |
+
return self(x)
|
45 |
+
|
46 |
+
|
47 |
+
class BERTTokenizer(AbstractEncoder):
|
48 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
49 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
50 |
+
super().__init__()
|
51 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
52 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
53 |
+
self.vq_interface = vq_interface
|
54 |
+
self.max_length = max_length
|
55 |
+
|
56 |
+
def forward(self, text):
|
57 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
58 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
59 |
+
tokens = batch_encoding["input_ids"]
|
60 |
+
return tokens
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def encode(self, text):
|
64 |
+
tokens = self(text)
|
65 |
+
if not self.vq_interface:
|
66 |
+
return tokens
|
67 |
+
return None, None, [None, None, tokens]
|
68 |
+
|
69 |
+
def decode(self, text):
|
70 |
+
return text
|
71 |
+
|
72 |
+
|
73 |
+
class BERTEmbedder(AbstractEncoder):
|
74 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
75 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
76 |
+
ckpt_path=None, ignore_keys=[], device="cuda", use_tokenizer=True, embedding_dropout=0.0):
|
77 |
+
super().__init__()
|
78 |
+
self.use_tknz_fn = use_tokenizer
|
79 |
+
if self.use_tknz_fn:
|
80 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
81 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
82 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
83 |
+
emb_dropout=embedding_dropout)
|
84 |
+
if ckpt_path is not None:
|
85 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
86 |
+
|
87 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
88 |
+
sd = torch.load(path, map_location="cpu")
|
89 |
+
keys = list(sd.keys())
|
90 |
+
for k in keys:
|
91 |
+
for ik in ignore_keys:
|
92 |
+
if k.startswith(ik):
|
93 |
+
print("Deleting key {} from state_dict.".format(k))
|
94 |
+
del sd[k]
|
95 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
96 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
97 |
+
|
98 |
+
def forward(self, text):
|
99 |
+
if self.use_tknz_fn:
|
100 |
+
tokens = self.tknz_fn(text)
|
101 |
+
else:
|
102 |
+
tokens = text
|
103 |
+
device = self.transformer.token_emb.weight.device # a trick to get device
|
104 |
+
tokens = tokens.to(device)
|
105 |
+
z = self.transformer(tokens, return_embeddings=True)
|
106 |
+
return z
|
107 |
+
|
108 |
+
def encode(self, text):
|
109 |
+
# output of length 77
|
110 |
+
return self(text)
|
111 |
+
|
112 |
+
|
113 |
+
class SpatialRescaler(nn.Module):
|
114 |
+
def __init__(self,
|
115 |
+
n_stages=1,
|
116 |
+
method='bilinear',
|
117 |
+
multiplier=0.5,
|
118 |
+
in_channels=3,
|
119 |
+
out_channels=None,
|
120 |
+
bias=False):
|
121 |
+
super().__init__()
|
122 |
+
self.n_stages = n_stages
|
123 |
+
assert self.n_stages >= 0
|
124 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
125 |
+
self.multiplier = multiplier
|
126 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
127 |
+
self.remap_output = out_channels is not None
|
128 |
+
if self.remap_output:
|
129 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
130 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
131 |
+
|
132 |
+
def forward(self,x):
|
133 |
+
for stage in range(self.n_stages):
|
134 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
135 |
+
|
136 |
+
|
137 |
+
if self.remap_output:
|
138 |
+
x = self.channel_mapper(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
def encode(self, x):
|
142 |
+
return self(x)
|
lib/model_zoo/clip.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
from lib.model_zoo.common.get_model import register
|
6 |
+
|
7 |
+
version = '0'
|
8 |
+
symbol = 'clip'
|
9 |
+
|
10 |
+
class AbstractEncoder(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
def encode(self, *args, **kwargs):
|
15 |
+
raise NotImplementedError
|
16 |
+
|
17 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
18 |
+
|
19 |
+
def disabled_train(self, mode=True):
|
20 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
21 |
+
does not change anymore."""
|
22 |
+
return self
|
23 |
+
|
24 |
+
@register('clip_text_frozen', version)
|
25 |
+
class FrozenCLIPTextEmbedder(AbstractEncoder):
|
26 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
27 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
28 |
+
super().__init__()
|
29 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
30 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
31 |
+
self.device = device
|
32 |
+
self.max_length = max_length # TODO: typical value?
|
33 |
+
self.freeze()
|
34 |
+
|
35 |
+
def freeze(self):
|
36 |
+
self.transformer = self.transformer.eval()
|
37 |
+
#self.train = disabled_train
|
38 |
+
for param in self.parameters():
|
39 |
+
param.requires_grad = False
|
40 |
+
|
41 |
+
def forward(self, text):
|
42 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
43 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
44 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
45 |
+
outputs = self.transformer(input_ids=tokens)
|
46 |
+
z = outputs.last_hidden_state
|
47 |
+
return z
|
48 |
+
|
49 |
+
def encode(self, text):
|
50 |
+
return self(text)
|
51 |
+
|
52 |
+
from transformers import CLIPProcessor, CLIPVisionModel
|
53 |
+
|
54 |
+
@register('clip_vision_frozen', version)
|
55 |
+
class FrozenCLIPVisionEmbedder(AbstractEncoder):
|
56 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
57 |
+
super().__init__()
|
58 |
+
self.processor = CLIPProcessor.from_pretrained(version)
|
59 |
+
self.transformer = CLIPVisionModel.from_pretrained(version)
|
60 |
+
self.device = device
|
61 |
+
self.max_length = max_length # TODO: typical value?
|
62 |
+
self.freeze()
|
63 |
+
|
64 |
+
def freeze(self):
|
65 |
+
self.transformer = self.transformer.eval()
|
66 |
+
#self.train = disabled_train
|
67 |
+
for param in self.parameters():
|
68 |
+
param.requires_grad = False
|
69 |
+
|
70 |
+
def forward(self, images):
|
71 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
72 |
+
pixels = inputs['pixel_values'].to(self.device)
|
73 |
+
outputs = self.transformer(pixel_values=pixels)
|
74 |
+
z = outputs.last_hidden_state
|
75 |
+
return z
|
76 |
+
|
77 |
+
def encode(self, image):
|
78 |
+
return self(image)
|
79 |
+
|
80 |
+
from transformers import CLIPModel
|
81 |
+
|
82 |
+
@register('clip_frozen', version)
|
83 |
+
class FrozenCLIP(AbstractEncoder):
|
84 |
+
def __init__(self,
|
85 |
+
version="openai/clip-vit-large-patch14",
|
86 |
+
max_length=77,
|
87 |
+
encode_type='encode_text',): # clip-vit-base-patch32
|
88 |
+
super().__init__()
|
89 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
90 |
+
self.processor = CLIPProcessor.from_pretrained(version)
|
91 |
+
self.model = CLIPModel.from_pretrained(version)
|
92 |
+
self.max_length = max_length # TODO: typical value?
|
93 |
+
self.encode_type = encode_type
|
94 |
+
self.pinv_text_projection = None
|
95 |
+
self.freeze()
|
96 |
+
|
97 |
+
def get_device(self):
|
98 |
+
# A trick to get device
|
99 |
+
return self.model.text_projection.weight.device
|
100 |
+
|
101 |
+
def freeze(self):
|
102 |
+
self.model = self.model.eval()
|
103 |
+
#self.train = disabled_train
|
104 |
+
for param in self.parameters():
|
105 |
+
param.requires_grad = False
|
106 |
+
|
107 |
+
def encode_text_pooled(self, text):
|
108 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
109 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
110 |
+
tokens = batch_encoding["input_ids"].to(self.get_device())
|
111 |
+
return self.model.get_text_features(input_ids=tokens)
|
112 |
+
|
113 |
+
def encode_vision_pooled(self, images):
|
114 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
115 |
+
pixels = inputs['pixel_values'].to(self.get_device())
|
116 |
+
return self.model.get_image_features(pixel_values=pixels)
|
117 |
+
|
118 |
+
def encode_text_noproj(self, text):
|
119 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
120 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
121 |
+
tokens = batch_encoding["input_ids"].to(self.get_device())
|
122 |
+
outputs = self.model.text_model(input_ids=tokens)
|
123 |
+
return outputs.last_hidden_state
|
124 |
+
|
125 |
+
def encode_vision_noproj(self, images):
|
126 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
127 |
+
pixels = inputs['pixel_values'].to(self.get_device())
|
128 |
+
outputs = self.model.vision_model(pixel_values=pixels)
|
129 |
+
return outputs.last_hidden_state
|
130 |
+
|
131 |
+
def encode_text_bug(self, text):
|
132 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
133 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
134 |
+
tokens = batch_encoding["input_ids"].to(self.get_device())
|
135 |
+
outputs = self.model.text_model(input_ids=tokens)
|
136 |
+
z = outputs.last_hidden_state
|
137 |
+
z_pooled = outputs.pooler_output
|
138 |
+
z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True)
|
139 |
+
return self.model.text_projection(z)
|
140 |
+
|
141 |
+
def encode_text(self, text):
|
142 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
143 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
144 |
+
tokens = batch_encoding["input_ids"].to(self.get_device())
|
145 |
+
outputs = self.model.text_model(input_ids=tokens)
|
146 |
+
z = self.model.text_projection(outputs.last_hidden_state)
|
147 |
+
z_pooled = self.model.text_projection(outputs.pooler_output)
|
148 |
+
z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True)
|
149 |
+
return z
|
150 |
+
|
151 |
+
def encode_vision(self, images):
|
152 |
+
z = self.encode_vision_noproj(images)
|
153 |
+
z = self.model.vision_model.post_layernorm(z)
|
154 |
+
z = self.model.visual_projection(z)
|
155 |
+
z_pooled = z[:, 0:1]
|
156 |
+
# z_pooled_normed = z_pooled / z_pooled.norm(dim=-1, keepdim=True)
|
157 |
+
z = z / torch.norm(z_pooled, dim=-1, keepdim=True)
|
158 |
+
return z
|
159 |
+
|
160 |
+
def encode_vision_pinvtext(self, images):
|
161 |
+
blank_text_encode_norm_avg = 28.9096
|
162 |
+
z = self.encode_vision(images)
|
163 |
+
if self.pinv_text_projection is None:
|
164 |
+
self.pinv_text_projection = torch.linalg.pinv(self.model.text_projection.weight).T
|
165 |
+
z = torch.matmul(z, self.pinv_text_projection)
|
166 |
+
# z = z / torch.norm(z[:, 0:1], dim=-1, keepdim=True)
|
167 |
+
z = z / torch.norm(z, dim=-1, keepdim=True)
|
168 |
+
z = z*blank_text_encode_norm_avg
|
169 |
+
# return z[:, 1:2].repeat(1, 77, 1)
|
170 |
+
z2 = self.encode_text_noproj('')
|
171 |
+
# z2[:, 1:77] = z[:, 0:76]
|
172 |
+
return torch.flip(z, dims=(1,))[:, 0:77]
|
173 |
+
|
174 |
+
def encode(self, *args, **kwargs):
|
175 |
+
return getattr(self, self.encode_type)(*args, **kwargs)
|
176 |
+
|
177 |
+
#############################
|
178 |
+
# copyed from justin's code #
|
179 |
+
#############################
|
180 |
+
|
181 |
+
@register('clip_vision_frozen_justin', version)
|
182 |
+
class FrozenCLIPVisionEmbedder_Justin(AbstractEncoder):
|
183 |
+
"""
|
184 |
+
Uses the CLIP image encoder.
|
185 |
+
"""
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
model='ViT-L/14',
|
189 |
+
jit=False,
|
190 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
191 |
+
antialias=False,
|
192 |
+
):
|
193 |
+
super().__init__()
|
194 |
+
from . import clip_justin
|
195 |
+
self.model, _ = clip_justin.load(name=model, device=device, jit=jit)
|
196 |
+
self.device = device
|
197 |
+
self.antialias = antialias
|
198 |
+
|
199 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
200 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
201 |
+
|
202 |
+
# I didn't call this originally, but seems like it was frozen anyway
|
203 |
+
self.freeze()
|
204 |
+
|
205 |
+
def freeze(self):
|
206 |
+
self.transformer = self.model.eval()
|
207 |
+
for param in self.parameters():
|
208 |
+
param.requires_grad = False
|
209 |
+
|
210 |
+
def preprocess(self, x):
|
211 |
+
import kornia
|
212 |
+
# Expects inputs in the range -1, 1
|
213 |
+
x = kornia.geometry.resize(x, (224, 224),
|
214 |
+
interpolation='bicubic',align_corners=True,
|
215 |
+
antialias=self.antialias)
|
216 |
+
x = (x + 1.) / 2.
|
217 |
+
# renormalize according to clip
|
218 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
219 |
+
return x
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
# x is assumed to be in range [-1,1]
|
223 |
+
return self.model.encode_image(self.preprocess(x)).float()
|
224 |
+
|
225 |
+
def encode(self, im):
|
226 |
+
return self(im).unsqueeze(1)
|
lib/model_zoo/clip_justin/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import load
|
lib/model_zoo/clip_justin/clip.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
from pkg_resources import packaging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from .model import build_model
|
14 |
+
# from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
15 |
+
|
16 |
+
try:
|
17 |
+
from torchvision.transforms import InterpolationMode
|
18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
19 |
+
except ImportError:
|
20 |
+
BICUBIC = Image.BICUBIC
|
21 |
+
|
22 |
+
|
23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
28 |
+
# _tokenizer = _Tokenizer()
|
29 |
+
|
30 |
+
_MODELS = {
|
31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
39 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def _download(url: str, root: str):
|
44 |
+
os.makedirs(root, exist_ok=True)
|
45 |
+
filename = os.path.basename(url)
|
46 |
+
|
47 |
+
expected_sha256 = url.split("/")[-2]
|
48 |
+
download_target = os.path.join(root, filename)
|
49 |
+
|
50 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
51 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
52 |
+
|
53 |
+
if os.path.isfile(download_target):
|
54 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
55 |
+
return download_target
|
56 |
+
else:
|
57 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
58 |
+
|
59 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
60 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
61 |
+
while True:
|
62 |
+
buffer = source.read(8192)
|
63 |
+
if not buffer:
|
64 |
+
break
|
65 |
+
|
66 |
+
output.write(buffer)
|
67 |
+
loop.update(len(buffer))
|
68 |
+
|
69 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
70 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
71 |
+
|
72 |
+
return download_target
|
73 |
+
|
74 |
+
|
75 |
+
def _convert_image_to_rgb(image):
|
76 |
+
return image.convert("RGB")
|
77 |
+
|
78 |
+
|
79 |
+
def _transform(n_px):
|
80 |
+
return Compose([
|
81 |
+
Resize(n_px, interpolation=BICUBIC),
|
82 |
+
CenterCrop(n_px),
|
83 |
+
_convert_image_to_rgb,
|
84 |
+
ToTensor(),
|
85 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
86 |
+
])
|
87 |
+
|
88 |
+
|
89 |
+
def available_models() -> List[str]:
|
90 |
+
"""Returns the names of available CLIP models"""
|
91 |
+
return list(_MODELS.keys())
|
92 |
+
|
93 |
+
|
94 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
95 |
+
"""Load a CLIP model
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
name : str
|
100 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
101 |
+
|
102 |
+
device : Union[str, torch.device]
|
103 |
+
The device to put the loaded model
|
104 |
+
|
105 |
+
jit : bool
|
106 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
107 |
+
|
108 |
+
download_root: str
|
109 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
model : torch.nn.Module
|
114 |
+
The CLIP model
|
115 |
+
|
116 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
117 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
118 |
+
"""
|
119 |
+
if name in _MODELS:
|
120 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
121 |
+
elif os.path.isfile(name):
|
122 |
+
model_path = name
|
123 |
+
else:
|
124 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
125 |
+
|
126 |
+
with open(model_path, 'rb') as opened_file:
|
127 |
+
try:
|
128 |
+
# loading JIT archive
|
129 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
130 |
+
state_dict = None
|
131 |
+
except RuntimeError:
|
132 |
+
# loading saved state dict
|
133 |
+
if jit:
|
134 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
135 |
+
jit = False
|
136 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
137 |
+
|
138 |
+
if not jit:
|
139 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
140 |
+
if str(device) == "cpu":
|
141 |
+
model.float()
|
142 |
+
return model, _transform(model.visual.input_resolution)
|
143 |
+
|
144 |
+
# patch the device names
|
145 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
146 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
147 |
+
|
148 |
+
def patch_device(module):
|
149 |
+
try:
|
150 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
151 |
+
except RuntimeError:
|
152 |
+
graphs = []
|
153 |
+
|
154 |
+
if hasattr(module, "forward1"):
|
155 |
+
graphs.append(module.forward1.graph)
|
156 |
+
|
157 |
+
for graph in graphs:
|
158 |
+
for node in graph.findAllNodes("prim::Constant"):
|
159 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
160 |
+
node.copyAttributes(device_node)
|
161 |
+
|
162 |
+
model.apply(patch_device)
|
163 |
+
patch_device(model.encode_image)
|
164 |
+
patch_device(model.encode_text)
|
165 |
+
|
166 |
+
# patch dtype to float32 on CPU
|
167 |
+
if str(device) == "cpu":
|
168 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
169 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
170 |
+
float_node = float_input.node()
|
171 |
+
|
172 |
+
def patch_float(module):
|
173 |
+
try:
|
174 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
175 |
+
except RuntimeError:
|
176 |
+
graphs = []
|
177 |
+
|
178 |
+
if hasattr(module, "forward1"):
|
179 |
+
graphs.append(module.forward1.graph)
|
180 |
+
|
181 |
+
for graph in graphs:
|
182 |
+
for node in graph.findAllNodes("aten::to"):
|
183 |
+
inputs = list(node.inputs())
|
184 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
185 |
+
if inputs[i].node()["value"] == 5:
|
186 |
+
inputs[i].node().copyAttributes(float_node)
|
187 |
+
|
188 |
+
model.apply(patch_float)
|
189 |
+
patch_float(model.encode_image)
|
190 |
+
patch_float(model.encode_text)
|
191 |
+
|
192 |
+
model.float()
|
193 |
+
|
194 |
+
return model, _transform(model.input_resolution.item())
|
195 |
+
|
196 |
+
|
197 |
+
# def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
198 |
+
# """
|
199 |
+
# Returns the tokenized representation of given input string(s)
|
200 |
+
|
201 |
+
# Parameters
|
202 |
+
# ----------
|
203 |
+
# texts : Union[str, List[str]]
|
204 |
+
# An input string or a list of input strings to tokenize
|
205 |
+
|
206 |
+
# context_length : int
|
207 |
+
# The context length to use; all CLIP models use 77 as the context length
|
208 |
+
|
209 |
+
# truncate: bool
|
210 |
+
# Whether to truncate the text in case its encoding is longer than the context length
|
211 |
+
|
212 |
+
# Returns
|
213 |
+
# -------
|
214 |
+
# A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
215 |
+
# We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
216 |
+
# """
|
217 |
+
# if isinstance(texts, str):
|
218 |
+
# texts = [texts]
|
219 |
+
|
220 |
+
# sot_token = _tokenizer.encoder["<|startoftext|>"]
|
221 |
+
# eot_token = _tokenizer.encoder["<|endoftext|>"]
|
222 |
+
# all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
223 |
+
# if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
224 |
+
# result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
225 |
+
# else:
|
226 |
+
# result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
227 |
+
|
228 |
+
# for i, tokens in enumerate(all_tokens):
|
229 |
+
# if len(tokens) > context_length:
|
230 |
+
# if truncate:
|
231 |
+
# tokens = tokens[:context_length]
|
232 |
+
# tokens[-1] = eot_token
|
233 |
+
# else:
|
234 |
+
# raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
235 |
+
# result[i, :len(tokens)] = torch.tensor(tokens)
|
236 |
+
|
237 |
+
# return result
|
lib/model_zoo/clip_justin/model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
return self.resblocks(x)
|
204 |
+
|
205 |
+
|
206 |
+
class VisionTransformer(nn.Module):
|
207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
208 |
+
super().__init__()
|
209 |
+
self.input_resolution = input_resolution
|
210 |
+
self.output_dim = output_dim
|
211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
212 |
+
|
213 |
+
scale = width ** -0.5
|
214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
216 |
+
self.ln_pre = LayerNorm(width)
|
217 |
+
|
218 |
+
self.transformer = Transformer(width, layers, heads)
|
219 |
+
|
220 |
+
self.ln_post = LayerNorm(width)
|
221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor):
|
224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
229 |
+
x = self.ln_pre(x)
|
230 |
+
|
231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
232 |
+
x = self.transformer(x)
|
233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
234 |
+
|
235 |
+
x = self.ln_post(x[:, 0, :])
|
236 |
+
|
237 |
+
if self.proj is not None:
|
238 |
+
x = x @ self.proj
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class CLIP(nn.Module):
|
244 |
+
def __init__(self,
|
245 |
+
embed_dim: int,
|
246 |
+
# vision
|
247 |
+
image_resolution: int,
|
248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
249 |
+
vision_width: int,
|
250 |
+
vision_patch_size: int,
|
251 |
+
# text
|
252 |
+
context_length: int,
|
253 |
+
vocab_size: int,
|
254 |
+
transformer_width: int,
|
255 |
+
transformer_heads: int,
|
256 |
+
transformer_layers: int
|
257 |
+
):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.context_length = context_length
|
261 |
+
|
262 |
+
if isinstance(vision_layers, (tuple, list)):
|
263 |
+
vision_heads = vision_width * 32 // 64
|
264 |
+
self.visual = ModifiedResNet(
|
265 |
+
layers=vision_layers,
|
266 |
+
output_dim=embed_dim,
|
267 |
+
heads=vision_heads,
|
268 |
+
input_resolution=image_resolution,
|
269 |
+
width=vision_width
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vision_heads = vision_width // 64
|
273 |
+
self.visual = VisionTransformer(
|
274 |
+
input_resolution=image_resolution,
|
275 |
+
patch_size=vision_patch_size,
|
276 |
+
width=vision_width,
|
277 |
+
layers=vision_layers,
|
278 |
+
heads=vision_heads,
|
279 |
+
output_dim=embed_dim
|
280 |
+
)
|
281 |
+
|
282 |
+
self.transformer = Transformer(
|
283 |
+
width=transformer_width,
|
284 |
+
layers=transformer_layers,
|
285 |
+
heads=transformer_heads,
|
286 |
+
attn_mask=self.build_attention_mask()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.vocab_size = vocab_size
|
290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
292 |
+
self.ln_final = LayerNorm(transformer_width)
|
293 |
+
|
294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
296 |
+
|
297 |
+
self.initialize_parameters()
|
298 |
+
|
299 |
+
def initialize_parameters(self):
|
300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
302 |
+
|
303 |
+
if isinstance(self.visual, ModifiedResNet):
|
304 |
+
if self.visual.attnpool is not None:
|
305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
310 |
+
|
311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
312 |
+
for name, param in resnet_block.named_parameters():
|
313 |
+
if name.endswith("bn3.weight"):
|
314 |
+
nn.init.zeros_(param)
|
315 |
+
|
316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
317 |
+
attn_std = self.transformer.width ** -0.5
|
318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
319 |
+
for block in self.transformer.resblocks:
|
320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
324 |
+
|
325 |
+
if self.text_projection is not None:
|
326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
327 |
+
|
328 |
+
def build_attention_mask(self):
|
329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
330 |
+
# pytorch uses additive attention mask; fill with -inf
|
331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
332 |
+
mask.fill_(float("-inf"))
|
333 |
+
mask.triu_(1) # zero out the lower diagonal
|
334 |
+
return mask
|
335 |
+
|
336 |
+
@property
|
337 |
+
def dtype(self):
|
338 |
+
return self.visual.conv1.weight.dtype
|
339 |
+
|
340 |
+
def encode_image(self, image):
|
341 |
+
return self.visual(image.type(self.dtype))
|
342 |
+
|
343 |
+
def encode_text(self, text):
|
344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
345 |
+
|
346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
348 |
+
x = self.transformer(x)
|
349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
350 |
+
x = self.ln_final(x).type(self.dtype)
|
351 |
+
|
352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
354 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
355 |
+
|
356 |
+
return x
|
357 |
+
|
358 |
+
def forward(self, image, text):
|
359 |
+
image_features = self.encode_image(image)
|
360 |
+
text_features = self.encode_text(text)
|
361 |
+
|
362 |
+
# normalized features
|
363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
365 |
+
|
366 |
+
# cosine similarity as logits
|
367 |
+
logit_scale = self.logit_scale.exp()
|
368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
369 |
+
logits_per_text = logits_per_image.t()
|
370 |
+
|
371 |
+
# shape = [global_batch_size, global_batch_size]
|
372 |
+
return logits_per_image, logits_per_text
|
373 |
+
|
374 |
+
|
375 |
+
def convert_weights(model: nn.Module):
|
376 |
+
"""Convert applicable model parameters to fp16"""
|
377 |
+
|
378 |
+
def _convert_weights_to_fp16(l):
|
379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
380 |
+
l.weight.data = l.weight.data.half()
|
381 |
+
if l.bias is not None:
|
382 |
+
l.bias.data = l.bias.data.half()
|
383 |
+
|
384 |
+
if isinstance(l, nn.MultiheadAttention):
|
385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
386 |
+
tensor = getattr(l, attr)
|
387 |
+
if tensor is not None:
|
388 |
+
tensor.data = tensor.data.half()
|
389 |
+
|
390 |
+
for name in ["text_projection", "proj"]:
|
391 |
+
if hasattr(l, name):
|
392 |
+
attr = getattr(l, name)
|
393 |
+
if attr is not None:
|
394 |
+
attr.data = attr.data.half()
|
395 |
+
|
396 |
+
model.apply(_convert_weights_to_fp16)
|
397 |
+
|
398 |
+
|
399 |
+
def build_model(state_dict: dict):
|
400 |
+
vit = "visual.proj" in state_dict
|
401 |
+
|
402 |
+
if vit:
|
403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
407 |
+
image_resolution = vision_patch_size * grid_size
|
408 |
+
else:
|
409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
410 |
+
vision_layers = tuple(counts)
|
411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
413 |
+
vision_patch_size = None
|
414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
415 |
+
image_resolution = output_width * 32
|
416 |
+
|
417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
421 |
+
transformer_heads = transformer_width // 64
|
422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
423 |
+
|
424 |
+
model = CLIP(
|
425 |
+
embed_dim,
|
426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
428 |
+
)
|
429 |
+
|
430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
431 |
+
if key in state_dict:
|
432 |
+
del state_dict[key]
|
433 |
+
|
434 |
+
convert_weights(model)
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
return model.eval()
|