File size: 1,987 Bytes
50e082d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr

from fastmri.data.subsample import create_mask_for_mask_type
from fastmri.data.transforms import apply_mask, to_tensor, center_crop
from pytorch_msssim import ssim



# st.title('FastMRI Kspace Reconstruction Masks')
# st.write('This app allows you to visualize the masks and their effects on the kspace data.')


def main_func(
    mask_name: str,
    mask_center_fractions: int,
    accelerations: int,
    seed: int,
    input_image: str,
):
    
    file_dict = {
        "knee 1": "knee_singlecoil_train/file1000002.h5",
        "knee 2": "knee_singlecoil_train/file1000003.h5",
        "brain 1": "brain_axial_train/file1000002.h5",
        "prostate 1": "prostate_t1_tse_train/file1000002.h5",
        "prostate 2": "prostate_t2_tse_train/file1000002.h5",
    }
    input_file = file_dict[input_image]
    
    mask_func = create_mask_for_mask_type(
        mask_name, center_fractions=[mask_center_fractions], accelerations=[accelerations]
    )
    mask = 
    masked_kspace, mask = mask(input_image, return_mask=True)
    return masked_kspace, mask

demo = gr.Interface(
    fn=main_func,
    inputs=[
        gr.inputs.Radio(['random', 'equispaced'], label="Mask Type"),
        gr.inputs.Slider(minimum=0.04, maximum=0.4, default=0.08, label="Center Fraction"),
        gr.inputs.Number(default=4, label="Acceleration"),
        gr.inputs.Number(default=0, label="Seed"),
        gr.inputs.Radio(["knee 1", "knee 2", "brain 1", "prostate 1", "prostate 2"], label="Input Image")
    ],
    outputs=[
        gr.outputs.Image(type="mask", label="Mask"),
        gr.outputs.Image(type="kspace", label="Masked Kspace"),
        gr.outputs.Image(type="kspace", label="Reconstructed Image"),
        gr.outputs.Image(type="kspace", label="Original Image"),

        gr.outputs.Dataframe()
    ],
    title="FastMRI Kspace Reconstruction Masks",
    description="This app allows you to visualize the masks and their effects on the kspace data."
)

demo.launch()