File size: 6,917 Bytes
9b43cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import PIL
import cv2
import torch
import torchvision
import torch.nn as nn
from utils.save_load import load_model
import gradio as gr
from PIL import Image
from torchvision import transforms
import gradio as gr
from pytorch_grad_cam import GradCAM, AblationCAM, FullGrad, EigenGradCAM, LayerCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam import DeepFeatureFactorization
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, deprocess_image
import numpy as np
from typing import List
from matplotlib import pyplot as plt
from matplotlib.lines import Line2D

labels = [
    "Achaemenid architecture",
    "American craftsman style",
    "American Foursquare architecture",
    "Ancient Egyptian architecture",
    "Art Deco architecture",
    "Art Nouveau architecture",
    "Baroque architecture",
    "Bauhaus architecture",
    "Beaux-Arts architecture",
    "Brutalism architecture",
    "Byzantine architecture",
    "Chicago school architecture",
    "Colonial architecture",
    "Deconstructivism",
    "Edwardian architecture",
    "Georgian architecture",
    "Gothic architecture",
    "Greek Revival architecture",
    "International style",
    "Islamic architecture",
    "Novelty architecture",
    "Palladian architecture",
    "Postmodern architecture",
    "Queen Anne architecture",
    "Romanesque architecture",
    "Russian Revival architecture",
    "Tudor Revival architecture"
]

print(len(labels))
model = torchvision.models.efficientnet_v2_l()

model.classifier = nn.Sequential(
    nn.Dropout(p=0.4, inplace=True),
    nn.Linear(1280, len(labels), bias=True)
)

load_model(model)


target_layers = model.features[-1]
classifier = model.classifier
cam = LayerCAM(model=model, target_layers=target_layers, use_cuda=False)
dff = DeepFeatureFactorization(
    model=model, target_layer=target_layers, computation_on_concepts=classifier)


def show_factorization_on_image(img: np.ndarray,
                                explanations: np.ndarray,
                                colors: List[np.ndarray] = None,
                                image_weight: float = 0.5,
                                concept_labels: List = None) -> np.ndarray:
    n_components = explanations.shape[0]
    if colors is None:
        # taken from https://github.com/edocollins/DFF/blob/master/utils.py
        _cmap = plt.cm.get_cmap('gist_rainbow')
        colors = [
            np.array(
                _cmap(i)) for i in np.arange(
                0,
                1,
                1.0 /
                n_components)]
    concept_per_pixel = explanations.argmax(axis=0)
    masks = []
    for i in range(n_components):
        mask = np.zeros(shape=(img.shape[0], img.shape[1], 3))
        mask[:, :, :] = colors[i][:3]
        explanation = explanations[i]
        explanation[concept_per_pixel != i] = 0
        mask = np.uint8(mask * 255)
        mask = cv2.cvtColor(mask, cv2.COLOR_RGB2HSV)
        mask[:, :, 2] = np.uint8(255 * explanation)
        mask = cv2.cvtColor(mask, cv2.COLOR_HSV2RGB)
        mask = np.float32(mask) / 255
        masks.append(mask)

    mask = np.sum(np.float32(masks), axis=0)
    result = img * image_weight + mask * (1 - image_weight)
    result = np.uint8(result * 255)

    if concept_labels is not None:
        px = 1 / plt.rcParams['figure.dpi']  # pixel in inches
        fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px))
        plt.rcParams['legend.fontsize'] = 6 * result.shape[0] / 256
        lw = 5 * result.shape[0] / 256
        lines = [Line2D([0], [0], color=colors[i], lw=lw)
                 for i in range(n_components)]
        plt.legend(lines,
                   concept_labels,

                   fancybox=False,
                   shadow=False,
                   frameon=False,
                   loc="center")

        plt.tight_layout(pad=0, w_pad=0, h_pad=0)
        plt.axis('off')
        fig.canvas.draw()
        data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
        plt.close(fig=fig)
        data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
        data = cv2.resize(data, (result.shape[1], result.shape[0]))
        result = np.vstack((result, data))
    return result


def create_labels(concept_scores, top_k=2):
    """ Create a list with the image-net category names of the top scoring categories"""
    concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
    concept_labels_topk = []
    for concept_index in range(concept_categories.shape[0]):
        categories = concept_categories[concept_index, :]
        concept_labels = []
        for category in categories:
            score = concept_scores[concept_index, category]
            label = f"{labels[category].split(',')[0]}:{score*100:.2f}%"
            concept_labels.append(label)
        concept_labels_topk.append("\n".join(concept_labels))
    return concept_labels_topk


def predict(rgb_img, top_k):
    print(top_k)
    inp_01 = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize([0.4937, 0.5060, 0.5030], [
                                 0.2705, 0.2653, 0.2998]),
            transforms.Resize((224, 224)),
        ])(rgb_img)

    model.eval()
    with torch.no_grad():
        prediction = torch.nn.functional.softmax(
            model(inp_01.unsqueeze(0))[0], dim=0)
        confidences = {labels[i]: float(prediction[i])
                       for i in range(len(labels))}

    concepts, batch_explanations, concept_outputs = dff(
        inp_01.unsqueeze(0), 5)

    concept_outputs = torch.softmax(
        torch.from_numpy(concept_outputs), axis=-1).numpy()
    concept_label_strings = create_labels(concept_outputs, top_k=top_k)

    print(inp_01.shape)
    print(batch_explanations[0].shape)
    res = cv2.resize(np.transpose(
        batch_explanations[0], (1, 2, 0)), (rgb_img.size[0], rgb_img.size[1]))
    res = np.transpose(res, (2, 0, 1))
    print(res.shape)

    visualization_01 = show_factorization_on_image(np.float32(rgb_img)/255.0,
                                                   res,
                                                   image_weight=0.3,
                                                   concept_labels=concept_label_strings)

    return confidences, visualization_01,


gr.Interface(fn=predict,
             inputs=[gr.Image(type="pil"), gr.Slider(
                 minimum=1, maximum=4, label="Number of top results", step=1)],
             outputs=[gr.Label(num_top_classes=5), "image"],
             examples=[["./assets/bauhaus.jpg", 1],
                       ["./assets/frank_gehry.jpg", 2], ["./assets/pyramid.jpg", 3]]
             ).launch()


# examples=["./assets/bauhaus.jpg", "./assets/frank_gehry.jpg", "./assets/pyramid.jpg"]