File size: 12,222 Bytes
2dba94f
 
 
dbd7a03
 
 
 
2dba94f
49268fc
2dba94f
 
dbd7a03
2dba94f
 
 
dbd7a03
4dcba74
2dba94f
 
49268fc
 
 
 
 
 
 
 
 
2dba94f
 
49268fc
 
 
 
 
 
86aa3b5
 
49268fc
 
 
 
 
 
2dba94f
 
1f3e8c7
2dba94f
49268fc
2dba94f
49268fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dba94f
dbd7a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dba94f
dbd7a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49268fc
 
 
 
 
 
 
 
dbd7a03
 
2dba94f
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7a03
e3a5d5a
dbd7a03
2dba94f
dbd7a03
 
 
 
e045c4a
2dba94f
dbd7a03
 
 
 
 
 
2dba94f
49268fc
 
 
 
2dba94f
 
 
 
 
 
 
 
 
49268fc
 
 
 
 
2dba94f
 
dbd7a03
2dba94f
 
dbd7a03
 
49268fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import gradio as gr
import pandas as pd
import json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from collections import Counter
from apscheduler.schedulers.background import BackgroundScheduler
import numpy as np

from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, LINKS, INTRODUCTION_TEXT, LEADERBOARD_TEXT, CITATION_BUTTON_LABEL, EVALUATION_DETAILS, CITATION_BUTTON_TEXT, model_hyperlink, SUBMIT_INTRODUCTION

TOKEN = os.environ.get("TOKEN", None)

OWNER = "Online-Mind2Web"
YEAR_VERSION = "2025"
LOCAL_DEBUG = True

def _format_sr_column(series: pd.Series) -> pd.Series:
    numeric = pd.to_numeric(series, errors="coerce")
    out = numeric.map(lambda x: f"{x:.1f}" if pd.notna(x) else "")

    # Wherever coercion failed (original was str / NaN), restore original value
    mask = numeric.isna() & series.notna()
    out[mask] = series[mask]
    return out

def get_dataframe_from_results(eval_path):
    df = pd.read_csv(eval_path)

    if "Verified" not in df.columns:
        df = df.sort_values(by=["Average SR"], ascending=False)
    else:
        df = df.sort_values(
        by=["Verified", "Average SR"],
        ascending=[False, False],      
        kind="mergesort"            
    )
    
    for col in ['Easy', 'Medium', 'Hard', 'Average SR']:
        if col in df.columns:
            df[col] = _format_sr_column(df[col])

    return df

auto_eval_dataframe_test = get_dataframe_from_results('./auto_o4-mini_Mind2Web-Online - Leaderboard_data.csv')
human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
TYPES = ["str", "str", "str", "markdown", "number", "number", "number", "number", "str", "str", "markdown", "str"]

def df_to_gradio(df: pd.DataFrame) -> dict:
    display_df = df.drop(columns=["Release Time"], errors="ignore")
    headers = display_df.columns.tolist()
    data = display_df.values.tolist()
    # simple styling: red if not verified
    if "Verified" in display_df.columns:
        verified_idx = headers.index("Verified")
        styling = [["background-color:#ffcccc" if not row[verified_idx] else "" for _ in headers] for row in data]
    else:
        styling = [["" for _ in headers] for _ in data]
    return {"data": data, "headers": headers, "metadata": {"styling": styling}}

def gradio_plot_wrapper(json_file):
    return plot_heatmap_with_performance_bar(json_file.name)

def style_auto_df(df: pd.DataFrame):
    def _row_style(row):
        bg = "background-color: #ffcccc" if row["Verified"] != True else ""
        return [bg] * len(row)

    styler = df.style.apply(_row_style, axis=1)
    try:
        styler = styler.hide(axis="index")
    except Exception:
        pass
    return styler

def nice_bounds(low: float, high: float) -> tuple[float, float]:
    if low == high:
        low -= 1; high += 1
    return (np.floor(low / 5) * 5, np.ceil(high / 5) * 5)

def plot_sr_vs_time(df: pd.DataFrame, title: str = "Success rate over time") -> go.Figure:

    work = df[df["Verified"] == True].copy()  # filter out unverified rows

    work["Release Time"] = pd.to_datetime(work["Release Time"], errors="coerce")
    work["Average SR"] = pd.to_numeric(work["Average SR"], errors="coerce")
    work = work.dropna(subset=["Release Time", "Average SR"])

    agents = work["Agent"].unique().tolist()
    color_map = {a: f"hsl({int(360*i/len(agents))},70%,45%)" for i, a in enumerate(agents)}

    fig = go.Figure()

    y_min_raw, y_max_raw = work["Average SR"].min(), work["Average SR"].max()
    y_min, y_max = nice_bounds(y_min_raw, y_max_raw)
    band_edges = np.linspace(y_min, y_max, 4)
    band_cols = ["rgba(226,247,226,0.35)", "rgba(255,255,204,0.35)", "rgba(255,228,225,0.35)"]
    shapes = [
        dict(type="rect", xref="paper", yref="y", x0=0, x1=1, y0=band_edges[i], y1=band_edges[i+1],
             fillcolor=band_cols[i], line_width=0)
        for i in range(3)
    ]

    for _, row in work.iterrows():
        fig.add_trace(
            go.Scatter(
                x=[row["Release Time"]],
                y=[row["Average SR"]],
                mode="markers+text",
                text=[row["Agent"]],
                textposition="top center",
                textfont=dict(size=11),
                marker=dict(size=10, color=color_map[row["Agent"]], opacity=0.9),
                hovertemplate="Agent: %{text}<br>SR: %{y:.1f}%<br>Date: %{x|%Y-%m}<extra></extra>",
                showlegend=False,
            )
        )

    if len(work) >= 2:
        x_numeric = work["Release Time"].map(pd.Timestamp.toordinal)
        slope, intercept = np.polyfit(x_numeric, work["Average SR"], 1)
        x_range = pd.date_range(work["Release Time"].min(), work["Release Time"].max(), freq="MS")
        y_pred = slope * x_range.map(pd.Timestamp.toordinal) + intercept
        fig.add_trace(go.Scatter(x=x_range, y=y_pred, mode="lines", line=dict(color="rgba(0,0,0,0.6)", dash="dash"), name="Trend", hoverinfo="skip"))

    fig.update_layout(
                    title=dict(text=title, x=0.5, xanchor="center", font=dict(size=22)), 
                    xaxis_title="Release Time", 
                    yaxis_title="Success Rate", 
                    template="plotly_white", 
                    width=1800, height=800, 
                    shapes=shapes,
                    )
    fig.update_xaxes(dtick="M1", tickformat="%Y-%m", showspikes=True, spikemode="across", spikecolor="rgba(0,0,0,0.4)", spikethickness=1, spikedash="dot")
    fig.update_yaxes(showspikes=True, spikemode="across", spikecolor="rgba(0,0,0,0.4)", spikethickness=1, spikedash="dot")
    return fig

def plot_heatmap_with_performance_bar(json_file):
    with open(json_file, "r") as f:
        data = json.load(f)

    agents = [k for k in data[0].keys() if k.endswith("_human_label")]
    records = []
    original_ids = [task["task_id"] for task in data]

    for task in data:
        task_id = task["task_id"]
        for agent in agents:
            raw_val = task.get(agent, "0")
            try:
                val = int(raw_val)
            except ValueError:
                val = 0
            val = 1 if val == 1 else 0
            records.append({
                "Task ID": task_id,
                "Agent": agent.replace("_human_label", ""),
                "Success": val
            })

    df = pd.DataFrame(records)
    pivot = df.pivot_table(index="Agent", columns="Task ID", values="Success", aggfunc="max")

    for task_id in original_ids:
        if task_id not in pivot.columns:
            pivot[task_id] = 0
    pivot = pivot[original_ids]

    agent_success_rate = pivot.sum(axis=1) / pivot.shape[1]
    pivot["SuccessRate"] = agent_success_rate
    pivot = pivot.sort_values(by="SuccessRate", ascending=False)
    pivot = pivot.drop(columns=["SuccessRate"])

    agent_name_map = {
    "Operator": "Operator",
    "Agent-E": "Agent-E",
    "Browser_Use": "Browser Use",
    "Claude_Computer_Use": "Claude Computer Use",
    "SeeAct": "SeeAct"
    }
    sorted_agents = pivot.index.tolist()
    pivot.index = [
        f"{agent_name_map.get(agent, agent)} ({agent_success_rate[agent]*100:.1f}%)"
        for agent in sorted_agents
    ]

    custom_labels = [["Success" if val == 1 else "Failure" for val in row] for row in pivot.values]
    any_agent_solved = pivot.max(axis=0).sum()
    best_agent_solved = pivot.sum(axis=1).max()
    total_tasks = len(original_ids)

    fig = make_subplots(
        rows=2, cols=1,
        row_heights=[0.8, 0.2],
        vertical_spacing=0.08,
        subplot_titles=("TASK ID", ""),
        shared_xaxes=False
    )

    fig.add_trace(go.Heatmap(
        z=pivot.values,
        x=pivot.columns,
        y=pivot.index,
        colorscale=[[0, "white"], [1, "skyblue"]],
        zmin=0,
        zmax=1,
        showscale=False,
        customdata=custom_labels,
        hovertemplate="Agent: %{y}<br>Task ID: %{x}<br>Completion: %{customdata}<extra></extra>"
    ), row=1, col=1)

    fig.add_trace(go.Bar(
        y=["Any agent", "Best agent"],
        x=[any_agent_solved, best_agent_solved],
        orientation='h',
        marker_color=["dodgerblue", "mediumseagreen"],
        text=[
            f"{int(any_agent_solved)}/{total_tasks} ({any_agent_solved / total_tasks:.1%})",
            f"{int(best_agent_solved)}/{total_tasks} ({best_agent_solved / total_tasks:.1%})"
        ],
        textposition="auto",
        showlegend=False
    ), row=2, col=1)

    fig.add_trace(go.Scatter(
        x=[None], y=[None],
        mode='markers',
        marker=dict(size=10, color='skyblue'),
        name='Success'
    ))
    fig.add_trace(go.Scatter(
        x=[None], y=[None],
        mode='markers',
        marker=dict(size=10, color='white', line=dict(width=1, color='black')),
        name='Failure'
    ))

    fig.update_xaxes(range=[0, total_tasks], row=2, col=1)
    fig.update_layout(
        height=600,
        xaxis=dict(showticklabels=False),
        yaxis=dict(title="Agent"),
        yaxis2=dict(title=""),
        margin=dict(t=60)
    )
    return fig

def refresh():
    auto_eval_dataframe_test = get_dataframe_from_results('./auto_o4-mini_Mind2Web-Online - Leaderboard_data.csv')
    human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
    sr_time_plot = plot_sr_vs_time(auto_eval_dataframe_test)
    auto_eval_dataframe_test = gr.Dataframe(value=df_to_gradio(auto_eval_dataframe_test), datatype=TYPES, interactive=False, wrap=False, elem_id="auto-leaderboard-table")

    return auto_eval_dataframe_test, human_eval_dataframe_test, sr_time_plot


demo = gr.Blocks(css="""#human-leaderboard-table { width: auto; min-width: calc(100% + 20px); }""")

with demo:
    gr.HTML(TITLE)
    gr.HTML(LINKS)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                lines=10,
            ) 

    gr.Markdown(LEADERBOARD_TEXT, elem_classes="markdown-text")

    with gr.Tab("Human Evaluation", elem_id="human-tab", id=1):
        human_leaderboard_table_test = gr.Dataframe(
            value=human_eval_dataframe_test,
            datatype=TYPES,
            interactive=False,
            wrap=False
        )
        gr.Markdown("### Visualization")
        gr.Markdown("This figure presents a fine-grained heatmap illustrating task-level completion across different agents. Each row corresponds to a specific agent, and each column represents a task (identified by its task ID). Blue bars indicate successful completions, while white spaces denote failures. Any agent: A task is considered successful if at least one agent is able to complete it. (This style of visualization is inspired by [HAL](https://hal.cs.princeton.edu/).)")
        fig = plot_heatmap_with_performance_bar("./human_label.json")
        gr.Plot(fig)
        gr.Markdown(EVALUATION_DETAILS)

    with gr.Tab("Auto Evaluation", elem_id="auto-tab", id=2):
        sr_time_plot = gr.Plot(plot_sr_vs_time(auto_eval_dataframe_test))
        gr.Markdown('### Agents highlighted in red represent unverified results that may involve unreliable evaluations and are provided for reference only. You can refer to the "Note" column for more details.')
        auto_leaderboard_table_test = gr.Dataframe(value=df_to_gradio(auto_eval_dataframe_test), datatype=TYPES, interactive=False, wrap=False, elem_id="auto-leaderboard-table")


    with gr.Tab("Submission Guideline", elem_id="submit-tab", id=3):
        with gr.Row():
            gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[
            auto_leaderboard_table_test,
            human_leaderboard_table_test,
            sr_time_plot
        ],
    )


scheduler = BackgroundScheduler()
scheduler.start()

if __name__ == "__main__":
    demo.launch(debug=True,share=True)