Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,239 Bytes
1ddd64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""Requires gradio==3.44.0"""
import io
import os
import uuid
import matplotlib
import time
matplotlib.use('Agg')
from os.path import join
from PIL import Image
import pandas as pd
import reverse_geocoder as rg
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
from math import radians, sin, cos, sqrt, asin, exp
from collections import defaultdict
IMAGE_FOLDER = './select'
CSV_FILE = './select.csv'
RESULTS_DIR = './results'
RULES = """# Plonk π π π
## Total time: 50 pictures ~ 5min
### How it works:
- Click on the map πΊοΈ (left) to indicate where do you think the image πΌοΈ (right) was captured!
- Click next to move to the next image.
β οΈ Your selection is final!
### Click "start" to begin...
"""
def haversine(lat1, lon1, lat2, lon2):
if (lat1 is None) or (lon1 is None) or (lat2 is None) or (lon2 is None):
return 0
R = 6371 # radius of the earth in km
dLat = radians(lat2 - lat1)
dLon = radians(lon2 - lon1)
a = (
sin(dLat / 2.0) ** 2
+ cos(radians(lat1)) * cos(radians(lat2)) * sin(dLon / 2.0) ** 2
)
c = 2 * asin(sqrt(a))
distance = R * c
return distance
def geoscore(d):
return 5000 * exp(-d / 1492.7)
class Engine(object):
def __init__(self, image_folder, csv_file, cache_path):
self.image_folder = image_folder
self.load_images_and_coordinates(csv_file)
self.cache_path = cache_path
# Initialize the score and distance lists
self.index = 0
self.stats = defaultdict(list)
# Create the figure and canvas only once
self.fig = plt.Figure(figsize=(10, 6))
self.ax = self.fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
self.MIN_LON, self.MAX_LON, self.MIN_LAT, self.MAX_LAT = self.ax.get_extent()
def load_images_and_coordinates(self, csv_file):
# Load the CSV
df = pd.read_csv(csv_file)
# Get the image filenames and their coordinates
self.images = df['image_id'].tolist()[:]
self.coordinates = df[['longitude', 'latitude']].values.tolist()[:]
self.admins = df[['city', 'area', 'region', 'country']].values.tolist()[:]
def isfinal(self):
return self.index == len(self.images)-1
def load_image(self):
if self.index > len(self.images)-1:
self.master.update_idletasks()
self.finish()
self.ax.clear()
self.ax.set_global()
self.ax.stock_img()
self.ax.add_feature(cfeature.COASTLINE)
self.ax.add_feature(cfeature.BORDERS, linestyle=':')
self.fig.canvas.draw()
pil = self.get_figure()
self.set_clock()
return pil, os.path.join(self.image_folder, f"{self.images[self.index]}.jpg"), '### ' + str(self.index + 1) + '/' + str(len(self.images))
def get_figure(self):
img_buf = io.BytesIO()
self.fig.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
pil = Image.open(img_buf)
self.width, self.height = pil.size
return pil
def normalize_pixels(self, click_lon, click_lat):
return self.MIN_LON + click_lon * (self.MAX_LON-self.MIN_LON) / self.width, self.MIN_LAT + (self.height - click_lat+1) * (self.MAX_LAT-self.MIN_LAT) / self.height
def set_clock(self):
self.time = time.time()
def get_clock(self):
return time.time() - self.time
def click(self, click_lon, click_lat):
time_elapsed = self.get_clock()
self.stats['times'].append(time_elapsed)
# convert click_lon, click_lat to lat, lon (given that you have the borders of the image)
# click_lon and click_lat is in pixels
# lon and lat is in degrees
click_lon, click_lat = self.normalize_pixels(click_lon, click_lat)
self.stats['clicked_locations'].append((click_lat, click_lon))
true_lon, true_lat = self.coordinates[self.index]
self.ax.plot(click_lon, click_lat, 'bo', transform=ccrs.Geodetic())
self.ax.plot([true_lon, click_lon], [true_lat, click_lat], color='blue', linewidth=1, transform=ccrs.Geodetic())
self.ax.plot(true_lon, true_lat, 'rx', transform=ccrs.Geodetic())
distance = haversine(true_lat, true_lon, click_lat, click_lon)
score = geoscore(distance)
self.stats['scores'].append(score)
self.stats['distances'].append(distance)
average_text = self.update_average_display()
result_text = (f"### GeoScore: {score:.0f}, distance: {distance:.0f} km\n ")
self.cache(self.index+1, score, distance, (click_lat, click_lon), time_elapsed)
return self.get_figure(), result_text + average_text
def next_image(self):
# Go to the next image
self.index += 1
return self.load_image()
def update_average_display(self):
# Calculate the average values
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
# Update the text box
return f"### Average GeoScore: {avg_score:.0f}, Average distance: {avg_distance:.0f} km"
def finish(self):
clicks = rg.search(self.stats['clicked_locations'])
clicked_admins = [[click['name'], click['admin2'], click['admin1'], click['cc']] for click in clicks]
correct = [0,0,0,0]
valid = [0,0,0,0]
for clicked_admin, true_admin in zip(clicked_admins, self.admins):
for i in range(4):
if true_admin[i]!= 'nan':
valid[i] += 1
if true_admin[i] == clicked_admin[i]:
correct[i] += 1
avg_city_accuracy = correct[0] / valid[0]
avg_area_accuracy = correct[1] / valid[1]
avg_region_accuracy = correct[2] / valid[2]
avg_country_accuracy = correct[3] / valid[3]
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
final_results = (
f"Average GeoScore: {avg_score:.0f} \n" +
f"Average distance: {avg_distance:.0f} km \n" +
f"Country Acc: {100*avg_country_accuracy:.1f} \n" +
f"Region Acc: {100*avg_region_accuracy:.1f} \n" +
f"Area Acc: {100*avg_area_accuracy:.1f} \n" +
f"City Acc: {100*avg_city_accuracy:.1f}"
)
self.cache_final(final_results)
# Update the text box
return f"# Your stats π\n" + final_results + f" \n# Thanks for playing β€οΈ"
# Function to save the game state
def cache(self, index, score, distance, location, time_elapsed):
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
with open(join(self.cache_path, str(index).zfill(2) + '.txt'), 'w') as f:
print(f"{score}, {distance}, {location[0]}, {location[1]}, {time_elapsed}", file=f)
# Function to save the game state
def cache_final(self, final_results):
times = ', '.join(map(str, self.stats['times']))
with open(join(self.cache_path, 'full.txt'), 'w') as f:
print(f"{final_results}" + '\n Times: ' + times, file=f)
if __name__ == "__main__":
import gradio as gr
def click(state, evt: gr.SelectData):
if state['clicked']:
return gr.update(), gr.update()
x, y = evt.index
state['clicked'] = True
image, text = state['engine'].click(x, y)
return gr.update(value=image), gr.update(value=text)
def next_(state):
if state['clicked']:
if state['engine'].isfinal():
text = state['engine'].finish()
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=text), gr.update(visible=False)
else:
fig, image, text = state['engine'].next_image()
state['clicked'] = False
return gr.update(value=fig), gr.update(value=image), gr.update(value=text), gr.update(), gr.update()
else:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
def start(state):
# create a unique random temporary name under CACHE_DIR
# generate random hex and make sure it doesn't exist under CACHE_DIR
while True:
path = str(uuid.uuid4().hex)
name = os.path.join(RESULTS_DIR, path)
if not os.path.exists(name):
break
state['engine'] = Engine(IMAGE_FOLDER, CSV_FILE, name)
state['clicked'] = False
fig, image, text = state['engine'].load_image()
return (
gr.update(value=fig, visible=True),
gr.update(value=image, visible=True),
gr.update(value=text, visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
with gr.Blocks() as demo:
state = gr.State({})
rules = gr.Markdown(RULES, visible=True)
start_button = gr.Button("Start", visible=True)
with gr.Row():
map_ = gr.Image(label='Map', visible=False)
image_ = gr.Image(label='Image', visible=False)
with gr.Row():
text = gr.Markdown("", visible=False)
text_count = gr.Markdown("", visible=False)
next_button = gr.Button("Next", visible=False)
start_button.click(start, inputs=[state], outputs=[map_, image_, text_count, text, next_button, rules, state, start_button])
map_.select(click, inputs=[state], outputs=[map_, text])
next_button.click(next_, inputs=[state], outputs=[map_, image_, text_count, text, next_button])
demo.launch(share=True, debug=True)
|