File size: 6,162 Bytes
6ecb800 d4eb073 5cb1127 2452cd6 d28f5ed 2452cd6 0bfbdcc d28f5ed 2452cd6 bd396ed 2452cd6 0bfbdcc 2452cd6 80e5dc8 2452cd6 ee57dca 2452cd6 d4eb073 0bfbdcc d4eb073 2452cd6 2ef3fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import random
import torch
import gradio as gr
from gradio_rangeslider import RangeSlider
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
import time
seed = random.randint(0,100000)
setup_seed(seed)
device = torch.device("cpu")
vocab_mlm = create_vocab()
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
save_path = 'mlm-model-27.pt'
train_seqs = pd.read_csv('C0_seq.csv')
train_seq = train_seqs['Seq'].tolist()
model = torch.load(save_path, map_location=torch.device('cpu'))
model = model.to(device)
def temperature_sampling(logits, temperature):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
sampled_token = torch.multinomial(probabilities, 1)
return sampled_token
def CTXGen(τ, g_num, length_range, progress=gr.Progress()):
start, end = length_range
X1 = "X"
X2 = "X"
X4 = ""
X5 = ""
X6 = ""
model.eval()
with torch.no_grad():
new_seq = None
generated_seqs = []
generated_seqs_FINAL = []
cls_pos_all = []
cls_probability_all = []
act_pos_all = []
act_probability_all = []
count = 0
gen_num = int(g_num)
NON_AA = ["B","O","U","Z","X",'<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']
start_time = time.time()
while count < gen_num:
if time.time() - start_time > 1200:
break
gen_len = random.randint(int(start), int(end))
X3 = "X" * gen_len
seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
vocab_mlm.token_to_idx["X"] = 4
padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
input_text = ["[MASK]" if i=="X" else i for i in padded_seq]
gen_length = len(input_text)
length = gen_length - sum(1 for x in input_text if x != '[MASK]')
for i in range(length):
_, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
attn_idx = torch.tensor(attn_idx).to(device)
mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
logits = model(idx_seq,idx_msa, attn_idx)
mask_logits = logits[0, mask_position.item(), :]
predicted_token_id = temperature_sampling(mask_logits, τ)
predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
input_text[mask_position.item()] = predicted_token
padded_seq[mask_position.item()] = predicted_token.strip()
new_seq = padded_seq
generated_seq = input_text
generated_seq[1] = "[MASK]"
generated_seq[2] = "[MASK]"
input_ids = vocab_mlm.__getitem__(generated_seq)
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
cls_mask_logits = logits[0, 1, :]
act_mask_logits = logits[0, 2, :]
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=1)
act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=1)
cls_pos = vocab_mlm.idx_to_token[cls_mask_probs[0].item()]
act_pos = vocab_mlm.idx_to_token[act_mask_probs[0].item()]
cls_probability = cls_probability[0].item()
act_probability = act_probability[0].item()
generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
if generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
generated_seqs.append("".join(generated_seq))
if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
generated_seqs_FINAL.append("".join(generated_seq))
cls_pos_all.append(cls_pos)
cls_probability_all.append(cls_probability)
act_pos_all.append(act_pos)
act_probability_all.append(act_probability)
out = pd.DataFrame({'Generated_seq': generated_seqs_FINAL, 'Subtype': cls_pos_all, 'Subtype_probability': cls_probability_all, 'Potency': act_pos_all, 'Potency_probability': act_probability_all, 'random_seed': seed})
out.to_csv("output.csv", index=False, encoding='utf-8-sig')
count += 1
progress(count / gen_num, desc="Generating conotoxins...")
return 'output.csv', f"Generated {count} conotoxins."
iface = gr.Interface(
fn=CTXGen,
inputs=[
gr.Slider(minimum=1, maximum=2, step=0.1, label="τ"),
gr.Dropdown(choices=[1,10,100], label="Number of generations"),
RangeSlider(minimum=8, maximum=50, step=1, value=(12, 17), label="Length range")
],
outputs=[
gr.File(label="Download generated conotoxins"),
gr.Textbox(label="Progress")
]
)
iface.launch() |