File size: 6,162 Bytes
6ecb800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4eb073
5cb1127
2452cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28f5ed
2452cd6
0bfbdcc
d28f5ed
2452cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd396ed
2452cd6
0bfbdcc
 
2452cd6
 
 
 
80e5dc8
2452cd6
ee57dca
2452cd6
d4eb073
0bfbdcc
d4eb073
 
2452cd6
2ef3fe3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import random
import torch
import gradio as gr
from gradio_rangeslider import RangeSlider
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import  get_paded_token_idx_gen, add_tokens_to_vocab
import time 
seed = random.randint(0,100000)

setup_seed(seed)
device = torch.device("cpu")
vocab_mlm = create_vocab()
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
save_path = 'mlm-model-27.pt'  
train_seqs = pd.read_csv('C0_seq.csv')  
train_seq = train_seqs['Seq'].tolist()
model = torch.load(save_path, map_location=torch.device('cpu'))
model = model.to(device)

def temperature_sampling(logits, temperature):
    logits = logits / temperature
    probabilities = torch.softmax(logits, dim=-1)
    sampled_token = torch.multinomial(probabilities, 1)
    return sampled_token

def CTXGen(τ, g_num, length_range, progress=gr.Progress()):
    start, end = length_range
    X1 = "X"
    X2 = "X"
    X4 = ""
    X5 = ""
    X6 = ""
    model.eval()
    with torch.no_grad():
        new_seq = None
        generated_seqs = []
        generated_seqs_FINAL = []
        cls_pos_all = []
        cls_probability_all = []
        act_pos_all = []
        act_probability_all = []

        count = 0
        gen_num = int(g_num)
        NON_AA = ["B","O","U","Z","X",'<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
                        '<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>', 
                        '<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>', 
                        '<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
                        '<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>', 
                        '<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']

        start_time = time.time()
        while count < gen_num:
            if time.time() - start_time > 1200:
                break
            gen_len = random.randint(int(start), int(end))
            X3 = "X" * gen_len
            seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
            vocab_mlm.token_to_idx["X"] = 4

            padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
            input_text = ["[MASK]" if i=="X" else i for i in padded_seq]

            gen_length = len(input_text)
            length = gen_length - sum(1 for x in input_text if x != '[MASK]')

            for i in range(length):
                _, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
                idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
                idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
                attn_idx = torch.tensor(attn_idx).to(device)

                mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
                mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
                
                logits = model(idx_seq,idx_msa, attn_idx) 
                mask_logits = logits[0, mask_position.item(), :]

                predicted_token_id = temperature_sampling(mask_logits, τ)

                predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
                input_text[mask_position.item()] = predicted_token
                padded_seq[mask_position.item()] = predicted_token.strip()
                new_seq = padded_seq

            generated_seq = input_text
        
            generated_seq[1] = "[MASK]"
            generated_seq[2] = "[MASK]"
            input_ids = vocab_mlm.__getitem__(generated_seq)
            logits = model(torch.tensor([input_ids]).to(device), idx_msa)
            
            cls_mask_logits = logits[0, 1, :]
            act_mask_logits = logits[0, 2, :]
            
            cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=1)
            act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=1)

            cls_pos = vocab_mlm.idx_to_token[cls_mask_probs[0].item()]
            act_pos = vocab_mlm.idx_to_token[act_mask_probs[0].item()]

            cls_probability = cls_probability[0].item()
            act_probability = act_probability[0].item()
            generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
            if generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
                generated_seqs.append("".join(generated_seq))
                if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
                    generated_seqs_FINAL.append("".join(generated_seq))
                    cls_pos_all.append(cls_pos)
                    cls_probability_all.append(cls_probability)
                    act_pos_all.append(act_pos)
                    act_probability_all.append(act_probability)
                    out = pd.DataFrame({'Generated_seq': generated_seqs_FINAL, 'Subtype': cls_pos_all, 'Subtype_probability': cls_probability_all, 'Potency': act_pos_all, 'Potency_probability': act_probability_all, 'random_seed': seed})
                    out.to_csv("output.csv", index=False, encoding='utf-8-sig')
                    count += 1
                    progress(count / gen_num, desc="Generating conotoxins...")
    return 'output.csv', f"Generated {count} conotoxins."

iface = gr.Interface(
    fn=CTXGen,
    inputs=[
        gr.Slider(minimum=1, maximum=2, step=0.1, label="τ"),
        gr.Dropdown(choices=[1,10,100], label="Number of generations"),
        RangeSlider(minimum=8, maximum=50, step=1, value=(12, 17), label="Length range")
    ],
    outputs=[
        gr.File(label="Download generated conotoxins"),
        gr.Textbox(label="Progress")
    ]
)
iface.launch()