File size: 7,093 Bytes
6ecb800 e946f65 6ecb800 e946f65 6ecb800 e946f65 6ecb800 e946f65 6ecb800 e946f65 d4eb073 e946f65 5cb1127 2452cd6 e946f65 2452cd6 d28f5ed 2452cd6 e946f65 0bfbdcc d28f5ed e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 bd396ed 2452cd6 0bfbdcc 2452cd6 c34757d e946f65 c34757d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import random
import torch
import gradio as gr
from gradio_rangeslider import RangeSlider
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
import time
# 全局标志,用于控制停止
is_stopped = False
# 设置随机种子
seed = random.randint(0, 100000)
setup_seed(seed)
# 加载模型和数据
device = torch.device("cpu")
vocab_mlm = create_vocab()
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
save_path = 'mlm-model-27.pt'
train_seqs = pd.read_csv('C0_seq.csv')
train_seq = train_seqs['Seq'].tolist()
model = torch.load(save_path, map_location=torch.device('cpu'))
model = model.to(device)
def temperature_sampling(logits, temperature):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
sampled_token = torch.multinomial(probabilities, 1)
return sampled_token
def stop_generation():
global is_stopped
is_stopped = True
return "Generation stopped."
def CTXGen(τ, g_num, length_range, progress=gr.Progress()):
global is_stopped
is_stopped = False # 重置停止标志
start, end = length_range
X1 = "X"
X2 = "X"
X4 = ""
X5 = ""
X6 = ""
model.eval()
with torch.no_grad():
new_seq = None
generated_seqs = []
generated_seqs_FINAL = []
cls_pos_all = []
cls_probability_all = []
act_pos_all = []
act_probability_all = []
count = 0
gen_num = int(g_num)
NON_AA = ["B", "O", "U", "Z", "X", '<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>', '<α6β4>', '<α2β4>',
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
'<α9α10>', '<α6α3β4>', '<NaTTXS>', '<Na17>', '<high>', '<low>', '[UNK]', '[SEP]', '[PAD]', '[CLS]', '[MASK]']
start_time = time.time()
while count < gen_num:
if is_stopped: # 检查是否停止
return 'output.csv', f"Generation stopped. Generated {count} conotoxins."
if time.time() - start_time > 1200:
break
gen_len = random.randint(int(start), int(end))
X3 = "X" * gen_len
seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
vocab_mlm.token_to_idx["X"] = 4
padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
input_text = ["[MASK]" if i == "X" else i for i in padded_seq]
gen_length = len(input_text)
length = gen_length - sum(1 for x in input_text if x != '[MASK]')
for i in range(length):
if is_stopped: # 检查是否停止
return 'output.csv', f"Generation stopped. Generated {count} conotoxins."
_, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
attn_idx = torch.tensor(attn_idx).to(device)
mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
logits = model(idx_seq, idx_msa, attn_idx)
mask_logits = logits[0, mask_position.item(), :]
predicted_token_id = temperature_sampling(mask_logits, τ)
predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
input_text[mask_position.item()] = predicted_token
padded_seq[mask_position.item()] = predicted_token.strip()
new_seq = padded_seq
generated_seq = input_text
generated_seq[1] = "[MASK]"
generated_seq[2] = "[MASK]"
input_ids = vocab_mlm.__getitem__(generated_seq)
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
cls_mask_logits = logits[0, 1, :]
act_mask_logits = logits[0, 2, :]
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=1)
act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=1)
cls_pos = vocab_mlm.idx_to_token[cls_mask_probs[0].item()]
act_pos = vocab_mlm.idx_to_token[act_mask_probs[0].item()]
cls_probability = cls_probability[0].item()
act_probability = act_probability[0].item()
generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
if generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
generated_seqs.append("".join(generated_seq))
if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
generated_seqs_FINAL.append("".join(generated_seq))
cls_pos_all.append(cls_pos)
cls_probability_all.append(cls_probability)
act_pos_all.append(act_pos)
act_probability_all.append(act_probability)
out = pd.DataFrame({'Generated_seq': generated_seqs_FINAL, 'Subtype': cls_pos_all, 'Subtype_probability': cls_probability_all, 'Potency': act_pos_all, 'Potency_probability': act_probability_all, 'random_seed': seed})
out.to_csv("output.csv", index=False, encoding='utf-8-sig')
count += 1
progress(count / gen_num, desc="Generating conotoxins...")
return 'output.csv', f"Generated {count} conotoxins."
# 使用 gr.Blocks 构建界面
with gr.Blocks() as demo:
gr.Markdown("# Conotoxin Generation")
with gr.Row():
τ = gr.Slider(minimum=1, maximum=2, step=0.1, label="τ")
g_num = gr.Dropdown(choices=[1, 10, 100], label="Number of generations")
length_range = RangeSlider(minimum=8, maximum=50, step=1, value=(12, 17), label="Length range")
with gr.Row():
start_button = gr.Button("Start Generation")
stop_button = gr.Button("Stop Generation")
with gr.Row():
output_file = gr.File(label="Download generated conotoxins")
status_text = gr.Textbox(label="Status")
# 绑定事件
start_button.click(CTXGen, inputs=[τ, g_num, length_range], outputs=[output_file, status_text])
stop_button.click(stop_generation, outputs=status_text)
# 启动 Gradio 应用
demo.launch() |