oucgc1996's picture
Upload 10 files
2ef3fe3 verified
raw
history blame
7.27 kB
import torch.nn as nn
import copy, math
import torch
import numpy as np
import torch.nn.functional as F
class Bert(nn.Module):
def __init__(self, encoder, src_embed):
super(Bert, self).__init__()
self.encoder = encoder
self.src_embed = src_embed
def forward(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
class Encoder(nn.Module):
"Encoder是N个EncoderLayer的堆积而成"
def __init__(self, layer, N):
super(Encoder, self).__init__()
#layer是一个SubLayer,我们clone N个
self.layers = clones(layer, N)
#再加一个LayerNorm层
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"把输入(x,mask)被逐层处理"
for layer in self.layers:
x = layer(x, mask)
return self.norm(x) #N个EncoderLayer处理完成之后还需要一个LayerNorm
class LayerNorm(nn.Module):
"构建一个layernorm模型"
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
LayerNorm + sublayer(Self-Attenion/Dense) + dropout + 残差连接
为了简单,把LayerNorm放到了前面,这和原始论文稍有不同,原始论文LayerNorm在最后
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
#将残差连接应用于具有相同大小的任何子层
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
"Encoder由self-attn and feed forward构成"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"如上图所示"
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
def make_bert(src_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
"构建模型"
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = Bert(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
)
# 随机初始化参数,这非常重要用Glorot/fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def make_bert_without_emb(d_model=128, N=2, d_ff=512, h=8, dropout=0.1):
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
trainable_encoder = Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N)
return trainable_encoder
def clones(module, N):
"克隆N个完全相同的SubLayer,使用了copy.deepcopy"
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def attention(query, key, value, mask=None, dropout=None):
"计算 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(-2)
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"传入head个数及model的维度."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# 这里假设d_v=d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# 相同的mask适应所有的head.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) 首先使用线性变换,然后把d_model分配给h个Head,每个head为d_k=d_model/h
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) 使用attention函数计算scaled-Dot-product-attention
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) 实现Multi-head attention,用view函数把8个head的64维向量拼接成一个512的向量。
#然后再使用一个线性变换(512,521),shape不变.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
"实现PE函数"
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)].clone().detach()
return self.dropout(x)