Delete bertmodel.py
Browse files- bertmodel.py +0 -199
bertmodel.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import copy, math
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
class Bert(nn.Module):
|
8 |
-
|
9 |
-
def __init__(self, encoder, src_embed):
|
10 |
-
super(Bert, self).__init__()
|
11 |
-
|
12 |
-
self.encoder = encoder
|
13 |
-
self.src_embed = src_embed
|
14 |
-
|
15 |
-
def forward(self, src, src_mask):
|
16 |
-
|
17 |
-
return self.encoder(self.src_embed(src), src_mask)
|
18 |
-
|
19 |
-
|
20 |
-
class Encoder(nn.Module):
|
21 |
-
"Encoder是N个EncoderLayer的堆积而成"
|
22 |
-
def __init__(self, layer, N):
|
23 |
-
super(Encoder, self).__init__()
|
24 |
-
#layer是一个SubLayer,我们clone N个
|
25 |
-
self.layers = clones(layer, N)
|
26 |
-
#再加一个LayerNorm层
|
27 |
-
self.norm = LayerNorm(layer.size)
|
28 |
-
|
29 |
-
def forward(self, x, mask):
|
30 |
-
"把输入(x,mask)被逐层处理"
|
31 |
-
for layer in self.layers:
|
32 |
-
x = layer(x, mask)
|
33 |
-
return self.norm(x) #N个EncoderLayer处理完成之后还需要一个LayerNorm
|
34 |
-
|
35 |
-
class LayerNorm(nn.Module):
|
36 |
-
"构建一个layernorm模型"
|
37 |
-
def __init__(self, features, eps=1e-6):
|
38 |
-
super(LayerNorm, self).__init__()
|
39 |
-
self.a_2 = nn.Parameter(torch.ones(features))
|
40 |
-
self.b_2 = nn.Parameter(torch.zeros(features))
|
41 |
-
self.eps = eps
|
42 |
-
|
43 |
-
def forward(self, x):
|
44 |
-
mean = x.mean(-1, keepdim=True)
|
45 |
-
std = x.std(-1, keepdim=True)
|
46 |
-
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
|
47 |
-
|
48 |
-
class SublayerConnection(nn.Module):
|
49 |
-
"""
|
50 |
-
LayerNorm + sublayer(Self-Attenion/Dense) + dropout + 残差连接
|
51 |
-
为了简单,把LayerNorm放到了前面,这和原始论文稍有不同,原始论文LayerNorm在最后
|
52 |
-
"""
|
53 |
-
def __init__(self, size, dropout):
|
54 |
-
super(SublayerConnection, self).__init__()
|
55 |
-
self.norm = LayerNorm(size)
|
56 |
-
self.dropout = nn.Dropout(dropout)
|
57 |
-
|
58 |
-
def forward(self, x, sublayer):
|
59 |
-
#将残差连接应用于具有相同大小的任何子层
|
60 |
-
return x + self.dropout(sublayer(self.norm(x)))
|
61 |
-
|
62 |
-
class EncoderLayer(nn.Module):
|
63 |
-
"Encoder由self-attn and feed forward构成"
|
64 |
-
def __init__(self, size, self_attn, feed_forward, dropout):
|
65 |
-
super(EncoderLayer, self).__init__()
|
66 |
-
self.self_attn = self_attn
|
67 |
-
self.feed_forward = feed_forward
|
68 |
-
self.sublayer = clones(SublayerConnection(size, dropout), 2)
|
69 |
-
self.size = size
|
70 |
-
|
71 |
-
def forward(self, x, mask):
|
72 |
-
"如上图所示"
|
73 |
-
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
|
74 |
-
return self.sublayer[1](x, self.feed_forward)
|
75 |
-
|
76 |
-
class PositionwiseFeedForward(nn.Module):
|
77 |
-
"Implements FFN equation."
|
78 |
-
def __init__(self, d_model, d_ff, dropout=0.1):
|
79 |
-
super(PositionwiseFeedForward, self).__init__()
|
80 |
-
self.w_1 = nn.Linear(d_model, d_ff)
|
81 |
-
self.w_2 = nn.Linear(d_ff, d_model)
|
82 |
-
self.dropout = nn.Dropout(dropout)
|
83 |
-
|
84 |
-
def forward(self, x):
|
85 |
-
return self.w_2(self.dropout(F.relu(self.w_1(x))))
|
86 |
-
|
87 |
-
def make_bert(src_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
|
88 |
-
"构建模型"
|
89 |
-
c = copy.deepcopy
|
90 |
-
attn = MultiHeadedAttention(h, d_model)
|
91 |
-
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
|
92 |
-
position = PositionalEncoding(d_model, dropout)
|
93 |
-
model = Bert(
|
94 |
-
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
|
95 |
-
|
96 |
-
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
|
97 |
-
)
|
98 |
-
|
99 |
-
# 随机初始化参数,这非常重要用Glorot/fan_avg.
|
100 |
-
for p in model.parameters():
|
101 |
-
if p.dim() > 1:
|
102 |
-
nn.init.xavier_uniform_(p)
|
103 |
-
return model
|
104 |
-
|
105 |
-
def make_bert_without_emb(d_model=128, N=2, d_ff=512, h=8, dropout=0.1):
|
106 |
-
c = copy.deepcopy
|
107 |
-
attn = MultiHeadedAttention(h, d_model)
|
108 |
-
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
|
109 |
-
trainable_encoder = Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N)
|
110 |
-
|
111 |
-
return trainable_encoder
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
def clones(module, N):
|
116 |
-
"克隆N个完全相同的SubLayer,使用了copy.deepcopy"
|
117 |
-
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
|
118 |
-
|
119 |
-
def subsequent_mask(size):
|
120 |
-
"Mask out subsequent positions."
|
121 |
-
attn_shape = (1, size, size)
|
122 |
-
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
|
123 |
-
return torch.from_numpy(subsequent_mask) == 0
|
124 |
-
|
125 |
-
def attention(query, key, value, mask=None, dropout=None):
|
126 |
-
"计算 'Scaled Dot Product Attention'"
|
127 |
-
d_k = query.size(-1)
|
128 |
-
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
|
129 |
-
if mask is not None:
|
130 |
-
mask = mask.unsqueeze(-2)
|
131 |
-
scores = scores.masked_fill(mask == 0, -1e9)
|
132 |
-
p_attn = F.softmax(scores, dim = -1)
|
133 |
-
if dropout is not None:
|
134 |
-
p_attn = dropout(p_attn)
|
135 |
-
return torch.matmul(p_attn, value), p_attn
|
136 |
-
|
137 |
-
class MultiHeadedAttention(nn.Module):
|
138 |
-
def __init__(self, h, d_model, dropout=0.1):
|
139 |
-
"传入head个数及model的维度."
|
140 |
-
super(MultiHeadedAttention, self).__init__()
|
141 |
-
assert d_model % h == 0
|
142 |
-
# 这里假设d_v=d_k
|
143 |
-
self.d_k = d_model // h
|
144 |
-
self.h = h
|
145 |
-
self.linears = clones(nn.Linear(d_model, d_model), 4)
|
146 |
-
self.attn = None
|
147 |
-
self.dropout = nn.Dropout(p=dropout)
|
148 |
-
|
149 |
-
def forward(self, query, key, value, mask=None):
|
150 |
-
"Implements Figure 2"
|
151 |
-
if mask is not None:
|
152 |
-
# 相同的mask适应所有的head.
|
153 |
-
mask = mask.unsqueeze(1)
|
154 |
-
nbatches = query.size(0)
|
155 |
-
|
156 |
-
# 1) 首先使用线性变换,然后把d_model分配给h个Head,每个head为d_k=d_model/h
|
157 |
-
query, key, value = \
|
158 |
-
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
|
159 |
-
for l, x in zip(self.linears, (query, key, value))]
|
160 |
-
|
161 |
-
# 2) 使用attention函数计算scaled-Dot-product-attention
|
162 |
-
x, self.attn = attention(query, key, value, mask=mask,
|
163 |
-
dropout=self.dropout)
|
164 |
-
|
165 |
-
# 3) 实现Multi-head attention,用view函数把8个head的64维向量拼接成一个512的向量。
|
166 |
-
#然后再使用一个线性变换(512,521),shape不变.
|
167 |
-
x = x.transpose(1, 2).contiguous() \
|
168 |
-
.view(nbatches, -1, self.h * self.d_k)
|
169 |
-
return self.linears[-1](x)
|
170 |
-
|
171 |
-
class Embeddings(nn.Module):
|
172 |
-
def __init__(self, d_model, vocab):
|
173 |
-
super(Embeddings, self).__init__()
|
174 |
-
self.lut = nn.Embedding(vocab, d_model)
|
175 |
-
self.d_model = d_model
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
return self.lut(x) * math.sqrt(self.d_model)
|
179 |
-
|
180 |
-
class PositionalEncoding(nn.Module):
|
181 |
-
"实现PE函数"
|
182 |
-
def __init__(self, d_model, dropout, max_len=5000):
|
183 |
-
super(PositionalEncoding, self).__init__()
|
184 |
-
self.dropout = nn.Dropout(p=dropout)
|
185 |
-
|
186 |
-
# Compute the positional encodings once in log space.
|
187 |
-
pe = torch.zeros(max_len, d_model)
|
188 |
-
position = torch.arange(0, max_len).unsqueeze(1)
|
189 |
-
div_term = torch.exp(torch.arange(0, d_model, 2) *
|
190 |
-
-(math.log(10000.0) / d_model))
|
191 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
192 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
193 |
-
pe = pe.unsqueeze(0)
|
194 |
-
self.register_buffer('pe', pe)
|
195 |
-
|
196 |
-
def forward(self, x):
|
197 |
-
x = x + self.pe[:, :x.size(1)].clone().detach()
|
198 |
-
return self.dropout(x)
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|