imagencpu / controlnet_pipeline.py
ovedrive's picture
fix launch for hf
aae36e9
# Import spaces before any CUDA/torch imports
import spaces
# Other imports below
import torch
import numpy as np
from PIL import Image
from transformers import pipeline
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
import os
import huggingface_hub
import config
class ControlNetPipeline:
def __init__(self):
"""Initialize the ControlNet pipeline with lazy loading"""
self.depth_estimator = None
self.pipe = None
self.controlnet = None
self.is_initialized = False
@spaces.GPU
def initialize(self):
"""Initialize the models with GPU acceleration"""
if self.is_initialized:
return
# Load depth estimator
self.depth_estimator = pipeline('depth-estimation')
# Load ControlNet model
self.controlnet = ControlNetModel.from_pretrained(
config.CONTROLNET_MODEL,
torch_dtype=torch.float16
)
# Load Stable Diffusion pipeline with ControlNet
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
config.BASE_MODEL,
controlnet=self.controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
# Use more efficient scheduler
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
# Enable memory optimizations
try:
self.pipe.enable_xformers_memory_efficient_attention()
except:
print("xformers not available, using default attention mechanism")
self.pipe.enable_model_cpu_offload()
self.is_initialized = True
@spaces.GPU
def process_image(self, image):
"""Process the input image to generate depth map"""
# Ensure model is initialized
if not self.is_initialized:
self.initialize()
# Generate depth map
depth = self.depth_estimator(image)['depth']
depth_array = np.array(depth)
depth_array = depth_array[:, :, None]
depth_array = np.concatenate([depth_array, depth_array, depth_array], axis=2)
depth_image = Image.fromarray(depth_array)
return depth_image
@spaces.GPU
def generate(self, prompt, image, negative_prompt=None, guidance_scale=7.5, num_inference_steps=20):
"""Generate an image using ControlNet with the provided prompt and input image"""
# Ensure model is initialized
if not self.is_initialized:
self.initialize()
# Process image to get depth map
depth_image = self.process_image(image)
# Generate the image
output = self.pipe(
prompt=prompt,
image=depth_image,
negative_prompt=negative_prompt,
guidance_scale=float(guidance_scale),
num_inference_steps=int(num_inference_steps)
)
return output.images[0]