Abe
commited on
Commit
·
f90e7b1
1
Parent(s):
f9091c4
publish
Browse files- .gitignore +2 -0
- README.md +4 -2
- app.py +69 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
.venv
|
README.md
CHANGED
@@ -7,7 +7,9 @@ sdk: gradio
|
|
7 |
sdk_version: 5.27.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: generate video prompts
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
7 |
sdk_version: 5.27.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: generate video prompts or captions from text-image
|
11 |
---
|
12 |
|
13 |
+
A CPU based image labelling with `Salesforce/blip-image-captioning-base` which can be used for training data generation.
|
14 |
+
|
15 |
+
[Justlab.ai](https://justlab.ai)
|
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Initialize model and processor globally - much smaller model
|
8 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
+
|
11 |
+
# Move to GPU if available, otherwise stays on CPU
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
def process_input(image, text=""):
|
16 |
+
"""Process image and optional text input to generate description"""
|
17 |
+
try:
|
18 |
+
# Convert numpy array to PIL Image
|
19 |
+
if isinstance(image, np.ndarray):
|
20 |
+
pil_image = Image.fromarray(image)
|
21 |
+
else:
|
22 |
+
return "Please provide a valid image"
|
23 |
+
|
24 |
+
# Set conditional text if provided
|
25 |
+
conditional_text = text if text else "a video of"
|
26 |
+
|
27 |
+
# Process image
|
28 |
+
inputs = processor(
|
29 |
+
pil_image,
|
30 |
+
text=conditional_text,
|
31 |
+
return_tensors="pt"
|
32 |
+
).to(device)
|
33 |
+
|
34 |
+
# Generate with careful parameters
|
35 |
+
output = model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_new_tokens=100,
|
38 |
+
num_beams=5,
|
39 |
+
length_penalty=1.0,
|
40 |
+
repetition_penalty=1.5
|
41 |
+
)
|
42 |
+
|
43 |
+
# Decode
|
44 |
+
result = processor.decode(output[0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
return result.strip()
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
return f"Error processing input: {str(e)}"
|
50 |
+
|
51 |
+
# Create Gradio interface
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=process_input,
|
54 |
+
inputs=[
|
55 |
+
gr.Image(type="numpy", label="Upload Image"),
|
56 |
+
gr.Textbox(
|
57 |
+
label="Prompt (Optional)",
|
58 |
+
placeholder="Guide the description or leave empty for automatic caption",
|
59 |
+
lines=2
|
60 |
+
),
|
61 |
+
],
|
62 |
+
outputs=gr.Textbox(label="Generated Description", lines=6),
|
63 |
+
title="Scene Description Generator",
|
64 |
+
description="Upload an image and optionally add a prompt to guide the description. Created by <a href='https://justlab.ai'>Justlab.ai</a>",
|
65 |
+
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.27.1
|
2 |
+
# Model requirements
|
3 |
+
transformers>=4.45.0
|
4 |
+
Pillow~=11.2.1
|
5 |
+
requests
|
6 |
+
torch~=2.7.0
|
7 |
+
numpy~=2.2.5
|