Spaces:
Sleeping
Sleeping
File size: 6,235 Bytes
812e69e 17aa94d 09fcd4a 85f6fcb 1b24a66 812e69e ab613df 69a9a62 ab613df 09fcd4a 5d27053 09fcd4a 5d27053 adefe82 09fcd4a 1947659 09fcd4a adefe82 4166d00 1947659 09fcd4a ef22e42 2aad192 4166d00 5d27053 4166d00 15a6d13 f2c0f66 4166d00 adefe82 ffc79bb 4166d00 09fcd4a 4166d00 09fcd4a 4166d00 09fcd4a 812e69e 4166d00 812e69e ec1fc83 09fcd4a 4166d00 63d55b2 09fcd4a 4166d00 09fcd4a 4166d00 adefe82 4166d00 09fcd4a 4166d00 09fcd4a 4166d00 09fcd4a ec1fc83 09fcd4a ec1fc83 4166d00 09fcd4a 812e69e 25761d6 28ae721 75ef805 adefe82 78004f2 812e69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import torch
from diffusers import UniPCMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
# --- INITIAL SETUP ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
print("Loading VAE...")
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
print("Loading WanPipeline in bfloat16...")
# This will use ZeroGPU/accelerate with meta devices
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 1.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
# Move the base pipeline to the GPU. ZeroGPU will manage this.
print("Moving pipeline to device (ZeroGPU will handle offloading)...")
pipe.to(device)
# --- LORA SETUP ---
# We will NOT fuse anything. Everything will be handled dynamically.
CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
CAUSVID_LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
BASE_LORA_NAME = "causvid_lora"
CUSTOM_LORA_NAME = "custom_lora"
print("Downloading base LoRA...")
try:
causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
print("✅ Base LoRA downloaded.")
except Exception as e:
causvid_path = None
print(f"⚠️ Could not download base LoRA: {e}")
print("Initialization complete. Gradio is starting...")
def move_adapter_to_device(pipe, adapter_name, device):
"""
Surgically moves only the parameters of a specific LoRA adapter to the target device.
This avoids touching the base model's meta tensors.
"""
print(f"Moving adapter '{adapter_name}' to {device}...")
for param in pipe.transformer.parameters():
if hasattr(param, "adapter_name") and param.adapter_name == adapter_name:
param.data = param.data.to(device, non_blocking=True)
if param.grad is not None:
param.grad.data = param.grad.data.to(device, non_blocking=True)
print(f"✅ Adapter '{adapter_name}' moved.")
@spaces.GPU()
def generate(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
# --- DYNAMIC LORA MANAGEMENT FOR EACH RUN ---
# Start with a clean slate by disabling any active adapters from previous runs
pipe.disable_lora()
active_adapters = []
adapter_weights = []
# 1. Load the Base LoRA
if causvid_path:
try:
# We load it for every run to ensure a clean state
print(f"Loading base LoRA '{BASE_LORA_NAME}'...")
pipe.load_lora_weights(causvid_path, adapter_name=BASE_LORA_NAME)
# THE CRITICAL FIX: Move only this adapter's weights to the GPU
move_adapter_to_device(pipe, BASE_LORA_NAME, device)
active_adapters.append(BASE_LORA_NAME)
adapter_weights.append(1.0)
except Exception as e:
print(f"⚠️ Failed to load base LoRA: {e}")
# 2. Load the Custom LoRA if provided
clean_lora_id = lora_id.strip() if lora_id else ""
if clean_lora_id:
try:
print(f"Loading custom LoRA '{CUSTOM_LORA_NAME}' from '{clean_lora_id}'...")
pipe.load_lora_weights(clean_lora_id, adapter_name=CUSTOM_LORA_NAME)
# THE CRITICAL FIX: Move only this adapter's weights to the GPU
move_adapter_to_device(pipe, CUSTOM_LORA_NAME, device)
active_adapters.append(CUSTOM_LORA_NAME)
adapter_weights.append(1.0)
except Exception as e:
print(f"⚠️ Failed to load custom LoRA '{clean_lora_id}': {e}")
# If it fails, delete the adapter config to prevent issues
if CUSTOM_LORA_NAME in pipe.transformer.peft_config:
del pipe.transformer.peft_config[CUSTOM_LORA_NAME]
# 3. Activate the successfully loaded adapters
if active_adapters:
print(f"Activating adapters: {active_adapters} with weights: {adapter_weights}")
pipe.set_adapters(active_adapters, adapter_weights)
apply_cache_on_pipe(pipe)
try:
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
finally:
# --- PROPER CLEANUP ---
print("Cleaning up LoRAs for this run...")
# Disable adapters to stop them from being used
pipe.disable_lora()
# Delete the LoRA configs from the model to truly unload them
if BASE_LORA_NAME in pipe.transformer.peft_config:
del pipe.transformer.peft_config[BASE_LORA_NAME]
if CUSTOM_LORA_NAME in pipe.transformer.peft_config:
del pipe.transformer.peft_config[CUSTOM_LORA_NAME]
print("✅ LoRAs cleaned up.")
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
gr.Textbox(label="LoRA ID (Optional)"),
],
outputs=gr.Image(label="output"),
)
iface.launch() |