File size: 5,332 Bytes
812e69e
ed01c6d
 
85f6fcb
1b24a66
812e69e
 
ab613df
69a9a62
ed01c6d
ab613df
ed01c6d
5d27053
ed01c6d
5d27053
adefe82
ed01c6d
bf7c515
ed01c6d
 
 
bf7c515
ed01c6d
 
bf7c515
 
ed01c6d
 
 
bf7c515
 
ed01c6d
 
 
bf7c515
 
4166d00
ed01c6d
09fcd4a
ed01c6d
4294cf6
ed01c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7c515
ed01c6d
 
 
 
 
 
 
 
 
ec1fc83
ed01c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1fc83
ed01c6d
 
 
 
 
 
 
4166d00
bf7c515
ed01c6d
812e69e
ed01c6d
812e69e
 
4294cf6
28ae721
 
75ef805
ed01c6d
78004f2
812e69e
ed01c6d
 
812e69e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from diffusers import UniPCMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
import gc

# --- INITIAL SETUP ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
print("Loading VAE...")
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)

print("Loading WanPipeline in bfloat16...")
# This will use ZeroGPU/accelerate with meta devices
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)

flow_shift = 1.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)

# Move the base pipeline to the GPU. ZeroGPU will manage this.
# This is the critical step that puts the model into a sharded state.
print("Moving pipeline to device (ZeroGPU will handle offloading)...")
pipe.to(device)

# --- LORA SETUP ---
CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
CAUSVID_LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
DEFAULT_LORA_NAME = "causvid_lora"
CUSTOM_LORA_NAME = "custom_lora"

print("Initialization complete. Gradio is starting...")

# The decorated function that will run on the GPU. It only does inference.
@spaces.GPU()
def generate(prompt, negative_prompt, width, height, num_inference_steps):
    print("--- Inside generate() [GPU function] ---")
    
    # The `pipe` object should already be configured with LoRAs by `call_infer`.
    # This function's only job is to run the pipeline.
    
    apply_cache_on_pipe(pipe)

    print("Running inference...")
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_frames=1,
        num_inference_steps=num_inference_steps,
        guidance_scale=1.0,
    )
    
    image = output.frames[0][0]
    image = (image * 255).astype(np.uint8)
    return Image.fromarray(image)

# The wrapper function that the Gradio UI calls. It handles LoRA logic.
def call_infer(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
    print("--- Inside call_infer() [CPU function] ---")
    
    try:
        # This section attempts to load LoRAs dynamically into the ZeroGPU-managed model.
        # This is the expected point of failure.
        clean_lora_id = lora_id.strip() if lora_id else ""
        print("Loading base LoRA for this run...")
        causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
        pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)

        # If a custom LoRA is provided, load it as well.
        if clean_lora_id:
            print(f"Loading custom LoRA '{clean_lora_id}' for this run...")
            pipe.load_lora_weights(clean_lora_id, adapter_name=CUSTOM_LORA_NAME)
            # If a custom LoRA is present, activate both.
            print("Activating both LoRAs...")
            pipe.set_adapters([DEFAULT_LORA_NAME, CUSTOM_LORA_NAME], adapter_weights=[1.0, 1.0])
        else:
            # If no custom LoRA, just activate the base one.
            print("Activating base LoRA only.")
            pipe.set_adapters([DEFAULT_LORA_NAME], adapter_weights=[1.0])
            
        print("LoRA setup complete. Calling the GPU function...")
        # Now, call the decorated function to perform the actual generation
        return generate(prompt, negative_prompt, width, height, num_inference_steps)

    except Exception as e:
        print(f"ERROR DURING INFERENCE SETUP: {e}")
        raise gr.Error(f"Failed during LoRA loading or inference: {e}")

    finally:
        # --- CLEANUP ---
        # This will run after `generate` has finished.
        print("Unloading all LoRAs to clean up...")
        pipe.unload_lora_weights()
        gc.collect()
        torch.cuda.empty_cache()
        print("Cleanup complete.")


# The interface is now pointed at the `call_infer` wrapper function.
iface = gr.Interface(
    fn=call_infer,
    inputs=[
        gr.Textbox(label="Input prompt"),
        gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
        gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
        gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
        gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
        gr.Textbox(label="LoRA ID (e.g., ostris/super-lora)"),
    ],
    outputs=gr.Image(label="output"),
    title="Wan 2.1 Image Generator (Wrapper Function Test)",
    description="A test to dynamically load LoRAs in a wrapper function before calling the GPU-decorated function."
)

iface.launch()