ovi054 commited on
Commit
fed4c02
·
verified ·
1 Parent(s): ed01c6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -98
app.py CHANGED
@@ -1,123 +1,154 @@
1
  import torch
2
- from diffusers import UniPCMultistepScheduler
3
- from diffusers import WanPipeline, AutoencoderKLWan
 
4
  from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
 
 
5
  from huggingface_hub import hf_hub_download
 
 
 
6
  from PIL import Image
7
  import numpy as np
 
 
 
8
  import gradio as gr
9
  import spaces
10
- import gc
11
 
12
- # --- INITIAL SETUP ---
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
- print(f"Using device: {device}")
 
15
 
16
  model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
17
- print("Loading VAE...")
18
  vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
19
-
20
- print("Loading WanPipeline in bfloat16...")
21
- # This will use ZeroGPU/accelerate with meta devices
22
  pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
23
-
24
- flow_shift = 1.0
25
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
26
 
27
- # Move the base pipeline to the GPU. ZeroGPU will manage this.
28
- # This is the critical step that puts the model into a sharded state.
29
- print("Moving pipeline to device (ZeroGPU will handle offloading)...")
30
  pipe.to(device)
31
 
32
- # --- LORA SETUP ---
33
- CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
34
- CAUSVID_LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  DEFAULT_LORA_NAME = "causvid_lora"
36
  CUSTOM_LORA_NAME = "custom_lora"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- print("Initialization complete. Gradio is starting...")
39
 
40
- # The decorated function that will run on the GPU. It only does inference.
41
  @spaces.GPU()
42
- def generate(prompt, negative_prompt, width, height, num_inference_steps):
43
- print("--- Inside generate() [GPU function] ---")
44
-
45
- # The `pipe` object should already be configured with LoRAs by `call_infer`.
46
- # This function's only job is to run the pipeline.
47
-
48
- apply_cache_on_pipe(pipe)
49
-
50
- print("Running inference...")
51
- output = pipe(
52
- prompt=prompt,
53
- negative_prompt=negative_prompt,
54
- height=height,
55
- width=width,
56
- num_frames=1,
57
- num_inference_steps=num_inference_steps,
58
- guidance_scale=1.0,
59
- )
60
-
61
- image = output.frames[0][0]
62
- image = (image * 255).astype(np.uint8)
63
- return Image.fromarray(image)
64
-
65
- # The wrapper function that the Gradio UI calls. It handles LoRA logic.
66
- def call_infer(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
67
- print("--- Inside call_infer() [CPU function] ---")
68
-
69
- try:
70
- # This section attempts to load LoRAs dynamically into the ZeroGPU-managed model.
71
- # This is the expected point of failure.
72
- clean_lora_id = lora_id.strip() if lora_id else ""
73
- print("Loading base LoRA for this run...")
74
- causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
75
- pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)
76
-
77
- # If a custom LoRA is provided, load it as well.
78
- if clean_lora_id:
79
- print(f"Loading custom LoRA '{clean_lora_id}' for this run...")
80
- pipe.load_lora_weights(clean_lora_id, adapter_name=CUSTOM_LORA_NAME)
81
- # If a custom LoRA is present, activate both.
82
- print("Activating both LoRAs...")
83
- pipe.set_adapters([DEFAULT_LORA_NAME, CUSTOM_LORA_NAME], adapter_weights=[1.0, 1.0])
84
- else:
85
- # If no custom LoRA, just activate the base one.
86
- print("Activating base LoRA only.")
87
- pipe.set_adapters([DEFAULT_LORA_NAME], adapter_weights=[1.0])
88
-
89
- print("LoRA setup complete. Calling the GPU function...")
90
- # Now, call the decorated function to perform the actual generation
91
- return generate(prompt, negative_prompt, width, height, num_inference_steps)
92
-
93
- except Exception as e:
94
- print(f"ERROR DURING INFERENCE SETUP: {e}")
95
- raise gr.Error(f"Failed during LoRA loading or inference: {e}")
96
-
97
- finally:
98
- # --- CLEANUP ---
99
- # This will run after `generate` has finished.
100
- print("Unloading all LoRAs to clean up...")
101
- pipe.unload_lora_weights()
102
- gc.collect()
103
- torch.cuda.empty_cache()
104
- print("Cleanup complete.")
105
-
106
-
107
- # The interface is now pointed at the `call_infer` wrapper function.
108
  iface = gr.Interface(
109
- fn=call_infer,
110
- inputs=[
111
- gr.Textbox(label="Input prompt"),
112
- gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
113
- gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
114
- gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
115
- gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
116
- gr.Textbox(label="LoRA ID (e.g., ostris/super-lora)"),
117
- ],
118
- outputs=gr.Image(label="output"),
119
- title="Wan 2.1 Image Generator (Wrapper Function Test)",
120
- description="A test to dynamically load LoRAs in a wrapper function before calling the GPU-decorated function."
121
  )
122
 
123
- iface.launch()
 
 
 
 
 
1
  import torch
2
+ from diffusers import UniPCMultistepScheduler, FlowMatchEulerDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler
3
+ from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
4
+ # from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
5
  from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
6
+ from diffusers.models import UNetSpatioTemporalConditionModel
7
+ from transformers import T5EncoderModel, T5Tokenizer
8
  from huggingface_hub import hf_hub_download
9
+
10
+
11
+
12
  from PIL import Image
13
  import numpy as np
14
+
15
+
16
+
17
  import gradio as gr
18
  import spaces
 
19
 
20
+
21
+
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
23
+
24
+
25
 
26
  model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
 
27
  vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
 
 
 
28
  pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
29
+ flow_shift = 1.0 #5.0 1.0 for image, 5.0 for 720P, 3.0 for 480P
 
30
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
31
 
32
+
33
+
 
34
  pipe.to(device)
35
 
36
+
37
+
38
+ # Configure DDIMScheduler with a beta schedule
39
+ # pipe.scheduler = DDIMScheduler.from_config(
40
+ # pipe.scheduler.config,
41
+ # beta_start=0.00085, # Starting beta value
42
+ # beta_end=0.012, # Ending beta value
43
+ # beta_schedule="linear", # Linear beta schedule (other options: "scaled_linear", "squaredcos_cap_v2")
44
+ # num_train_timesteps=1000, # Number of timesteps
45
+ # flow_shift=flow_shift
46
+ # )
47
+
48
+
49
+
50
+
51
+
52
+
53
+ # Configure FlowMatchEulerDiscreteScheduler
54
+ # pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
55
+ # pipe.scheduler.config,
56
+ # flow_shift=flow_shift # Retain flow_shift for WanPipeline compatibility
57
+ # )
58
+
59
+
60
+
61
+ # --- LoRA State Management ---
62
+ # Define unique names for our adapters
63
  DEFAULT_LORA_NAME = "causvid_lora"
64
  CUSTOM_LORA_NAME = "custom_lora"
65
+ # Track which custom LoRA is currently loaded to avoid reloading
66
+ CURRENTLY_LOADED_CUSTOM_LORA = None
67
+
68
+
69
+
70
+ # Load the default base LoRA ONCE at startup
71
+ print("Loading base LoRA...")
72
+ CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
73
+ CAUSVID_LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32_v2.safetensors"
74
+ try:
75
+ causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
76
+ pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)
77
+ print(f"✅ Default LoRA '{DEFAULT_LORA_NAME}' loaded successfully.")
78
+ except Exception as e:
79
+ print(f"⚠️ Default LoRA could not be loaded: {e}")
80
+ DEFAULT_LORA_NAME = None
81
+
82
+
83
+
84
+ # print("Initialization complete. Gradio is starting...")
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
 
 
93
 
 
94
  @spaces.GPU()
95
+ def generate(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
96
+ # if lora_id and lora_id.strip() != "":
97
+ # pipe.unload_lora_weights()
98
+ # pipe.load_lora_weights(lora_id.strip())
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+ #pipe.to("cuda")
109
+ # apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2))
110
+ apply_cache_on_pipe(
111
+ pipe,
112
+ # residual_diff_threshold=0.2,
113
+ )
114
+ try:
115
+ output = pipe(
116
+ prompt=prompt,
117
+ negative_prompt=negative_prompt,
118
+ height=height,
119
+ width=width,
120
+ num_frames=1,
121
+ num_inference_steps=num_inference_steps,
122
+ guidance_scale=1.0, #5.0
123
+ )
124
+ image = output.frames[0][0]
125
+ image = (image * 255).astype(np.uint8)
126
+ return Image.fromarray(image)
127
+ finally:
128
+ pass
129
+
130
+
131
+
132
+
133
+
134
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  iface = gr.Interface(
136
+ fn=generate,
137
+ inputs=[
138
+ gr.Textbox(label="Input prompt"),
139
+ ],
140
+ additional_inputs = [
141
+ gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
142
+ gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
143
+ gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
144
+ gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
145
+ gr.Textbox(label="LoRA ID"),
146
+ ],
147
+ outputs=gr.Image(label="output"),
148
  )
149
 
150
+
151
+
152
+ iface.launch()
153
+
154
+