Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
model_id = "nvidia/OpenReasoning-Nemotron-1.5B"
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
def chat_api(prompt, max_new_tokens=200, temperature=0.7):
|
13 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
14 |
+
outputs = model.generate(
|
15 |
+
**inputs,
|
16 |
+
max_new_tokens=max_new_tokens,
|
17 |
+
temperature=temperature,
|
18 |
+
do_sample=True
|
19 |
+
)
|
20 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return response
|
22 |
+
|
23 |
+
demo = gr.Interface(
|
24 |
+
fn=chat_api,
|
25 |
+
inputs=[
|
26 |
+
gr.Textbox(label="Prompt", placeholder="Ask me anything..."),
|
27 |
+
gr.Slider(50, 512, value=200, step=10, label="Max Tokens"),
|
28 |
+
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
29 |
+
],
|
30 |
+
outputs="text",
|
31 |
+
title="OpenReasoning Nemotron-1.5B API",
|
32 |
+
description="Public Hugging Face Space that runs NVIDIA's Nemotron-1.5B model."
|
33 |
+
)
|
34 |
+
|
35 |
+
demo.launch()
|