import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "nvidia/OpenReasoning-Nemotron-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def chat_api(prompt, max_new_tokens=200, temperature=0.7): inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response demo = gr.Interface( fn=chat_api, inputs=[ gr.Textbox(label="Prompt", placeholder="Ask me anything..."), gr.Slider(50, 512, value=200, step=10, label="Max Tokens"), gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") ], outputs="text", title="OpenReasoning Nemotron-1.5B API", description="Public Hugging Face Space that runs NVIDIA's Nemotron-1.5B model." ) demo.launch()