Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,939 Bytes
ecf8904 ee0690c ecf8904 b21a094 ecf8904 880ac53 b4a4fd5 57aeafc b4a4fd5 ecf8904 79c4fdc ecf8904 79c4fdc ecf8904 b4a4fd5 79c4fdc ecf8904 eb5c0dc ecf8904 b4a4fd5 ecf8904 b4a4fd5 ecf8904 79c4fdc ecf8904 b4a4fd5 45bb2d8 1d91ad9 79c4fdc 45bb2d8 79c4fdc ecf8904 79c4fdc 1d91ad9 79c4fdc ecf8904 1644fb9 ecf8904 9009886 79c4fdc 9009886 79c4fdc 9009886 2a7707c 79c4fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
"""
Demonstrates integrating Rerun visualization with Gradio and HF ZeroGPU.
"""
import uuid
import gradio as gr
import rerun as rr
import rerun.blueprint as rrb
from gradio_rerun import Rerun
import spaces
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# Whenever we need a recording, we construct a new recording stream.
# As long as the app and recording IDs remain the same, the data
# will be merged by the Viewer.
def get_recording(recording_id: str) -> rr.RecordingStream:
return rr.RecordingStream(
application_id="rerun_example_gradio", recording_id=recording_id
)
# A task can directly log to a binary stream, which is routed to the embedded viewer.
# Incremental chunks are yielded to the viewer using `yield stream.read()`.
#
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
@spaces.GPU
def streaming_object_detection(recording_id: str, img):
# Here we get a recording using the provided recording id.
rec = get_recording(recording_id)
stream = rec.binary_stream()
if img is None:
raise gr.Error("Must provide an image detect objects in.")
blueprint = rrb.Blueprint(
rrb.Horizontal(
rrb.Spatial2DView(origin="image"),
),
collapse_panels=True,
)
rec.send_blueprint(blueprint)
rec.set_time("iteration", sequence=0)
rec.log("image", rr.Image(img))
yield stream.read()
with torch.inference_mode():
inputs = processor(images=img, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.85
height, width = img.shape[:2]
target_sizes = torch.tensor([[height, width]]) # [height, width] order
results = processor.post_process_object_detection(
outputs, target_sizes=target_sizes, threshold=0.85
)[0]
rec.log(
"image/objects",
rr.Boxes2D(
array=results["boxes"],
array_format=rr.Box2DFormat.XYXY,
labels=[model.config.id2label[label.item()] for label in results["labels"]],
colors=[
(
label.item() * 50 % 255,
(label.item() * 80 + 40) % 255,
(label.item() * 120 + 100) % 255,
)
for label in results["labels"]
],
),
)
# Ensure we consume everything from the recording.
stream.flush()
yield stream.read()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Your image", open=True):
img = gr.Image(interactive=True, label="Image")
detect_objects = gr.Button("Detect objects")
with gr.Column(scale=4):
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
height=700,
)
# We make a new recording id, and store it in a Gradio's session state.
recording_id = gr.State(uuid.uuid4())
# When registering the event listeners, we pass the `recording_id` in as input in order to create
# a recording stream using that id.
detect_objects.click(
# Using the `viewer` as an output allows us to stream data to it by yielding bytes from the callback.
streaming_object_detection,
inputs=[recording_id, img],
outputs=[viewer],
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|