Spaces:
Running
on
A10G
Running
on
A10G
| __author__ = 'tylin' | |
| __version__ = '2.0' | |
| # Interface for accessing the Microsoft COCO dataset. | |
| # Microsoft COCO is a large image dataset designed for object detection, | |
| # segmentation, and caption generation. annotator.oneformer.pycocotools is a Python API that | |
| # assists in loading, parsing and visualizing the annotations in COCO. | |
| # Please visit http://mscoco.org/ for more information on COCO, including | |
| # for the data, paper, and tutorials. The exact format of the annotations | |
| # is also described on the COCO website. For example usage of the annotator.oneformer.pycocotools | |
| # please see annotator.oneformer.pycocotools_demo.ipynb. In addition to this API, please download both | |
| # the COCO images and annotations in order to run the demo. | |
| # An alternative to using the API is to load the annotations directly | |
| # into Python dictionary | |
| # Using the API provides additional utility functions. Note that this API | |
| # supports both *instance* and *caption* annotations. In the case of | |
| # captions not all functions are defined (e.g. categories are undefined). | |
| # The following API functions are defined: | |
| # COCO - COCO api class that loads COCO annotation file and prepare data structures. | |
| # decodeMask - Decode binary mask M encoded via run-length encoding. | |
| # encodeMask - Encode binary mask M using run-length encoding. | |
| # getAnnIds - Get ann ids that satisfy given filter conditions. | |
| # getCatIds - Get cat ids that satisfy given filter conditions. | |
| # getImgIds - Get img ids that satisfy given filter conditions. | |
| # loadAnns - Load anns with the specified ids. | |
| # loadCats - Load cats with the specified ids. | |
| # loadImgs - Load imgs with the specified ids. | |
| # annToMask - Convert segmentation in an annotation to binary mask. | |
| # showAnns - Display the specified annotations. | |
| # loadRes - Load algorithm results and create API for accessing them. | |
| # download - Download COCO images from mscoco.org server. | |
| # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. | |
| # Help on each functions can be accessed by: "help COCO>function". | |
| # See also COCO>decodeMask, | |
| # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, | |
| # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, | |
| # COCO>loadImgs, COCO>annToMask, COCO>showAnns | |
| # Microsoft COCO Toolbox. version 2.0 | |
| # Data, paper, and tutorials available at: http://mscoco.org/ | |
| # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. | |
| # Licensed under the Simplified BSD License [see bsd.txt] | |
| import json | |
| import time | |
| import numpy as np | |
| import copy | |
| import itertools | |
| from . import mask as maskUtils | |
| import os | |
| from collections import defaultdict | |
| import sys | |
| PYTHON_VERSION = sys.version_info[0] | |
| if PYTHON_VERSION == 2: | |
| from urllib import urlretrieve | |
| elif PYTHON_VERSION == 3: | |
| from urllib.request import urlretrieve | |
| def _isArrayLike(obj): | |
| return hasattr(obj, '__iter__') and hasattr(obj, '__len__') | |
| class COCO: | |
| def __init__(self, annotation_file=None): | |
| """ | |
| Constructor of Microsoft COCO helper class for reading and visualizing annotations. | |
| :param annotation_file (str): location of annotation file | |
| :param image_folder (str): location to the folder that hosts images. | |
| :return: | |
| """ | |
| # load dataset | |
| self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() | |
| self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) | |
| if not annotation_file == None: | |
| print('loading annotations into memory...') | |
| tic = time.time() | |
| with open(annotation_file, 'r') as f: | |
| dataset = json.load(f) | |
| assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) | |
| print('Done (t={:0.2f}s)'.format(time.time()- tic)) | |
| self.dataset = dataset | |
| self.createIndex() | |
| def createIndex(self): | |
| # create index | |
| print('creating index...') | |
| anns, cats, imgs = {}, {}, {} | |
| imgToAnns,catToImgs = defaultdict(list),defaultdict(list) | |
| if 'annotations' in self.dataset: | |
| for ann in self.dataset['annotations']: | |
| imgToAnns[ann['image_id']].append(ann) | |
| anns[ann['id']] = ann | |
| if 'images' in self.dataset: | |
| for img in self.dataset['images']: | |
| imgs[img['id']] = img | |
| if 'categories' in self.dataset: | |
| for cat in self.dataset['categories']: | |
| cats[cat['id']] = cat | |
| if 'annotations' in self.dataset and 'categories' in self.dataset: | |
| for ann in self.dataset['annotations']: | |
| catToImgs[ann['category_id']].append(ann['image_id']) | |
| print('index created!') | |
| # create class members | |
| self.anns = anns | |
| self.imgToAnns = imgToAnns | |
| self.catToImgs = catToImgs | |
| self.imgs = imgs | |
| self.cats = cats | |
| def info(self): | |
| """ | |
| Print information about the annotation file. | |
| :return: | |
| """ | |
| for key, value in self.dataset['info'].items(): | |
| print('{}: {}'.format(key, value)) | |
| def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): | |
| """ | |
| Get ann ids that satisfy given filter conditions. default skips that filter | |
| :param imgIds (int array) : get anns for given imgs | |
| catIds (int array) : get anns for given cats | |
| areaRng (float array) : get anns for given area range (e.g. [0 inf]) | |
| iscrowd (boolean) : get anns for given crowd label (False or True) | |
| :return: ids (int array) : integer array of ann ids | |
| """ | |
| imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] | |
| catIds = catIds if _isArrayLike(catIds) else [catIds] | |
| if len(imgIds) == len(catIds) == len(areaRng) == 0: | |
| anns = self.dataset['annotations'] | |
| else: | |
| if not len(imgIds) == 0: | |
| lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] | |
| anns = list(itertools.chain.from_iterable(lists)) | |
| else: | |
| anns = self.dataset['annotations'] | |
| anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] | |
| anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] | |
| if not iscrowd == None: | |
| ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] | |
| else: | |
| ids = [ann['id'] for ann in anns] | |
| return ids | |
| def getCatIds(self, catNms=[], supNms=[], catIds=[]): | |
| """ | |
| filtering parameters. default skips that filter. | |
| :param catNms (str array) : get cats for given cat names | |
| :param supNms (str array) : get cats for given supercategory names | |
| :param catIds (int array) : get cats for given cat ids | |
| :return: ids (int array) : integer array of cat ids | |
| """ | |
| catNms = catNms if _isArrayLike(catNms) else [catNms] | |
| supNms = supNms if _isArrayLike(supNms) else [supNms] | |
| catIds = catIds if _isArrayLike(catIds) else [catIds] | |
| if len(catNms) == len(supNms) == len(catIds) == 0: | |
| cats = self.dataset['categories'] | |
| else: | |
| cats = self.dataset['categories'] | |
| cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] | |
| cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] | |
| cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] | |
| ids = [cat['id'] for cat in cats] | |
| return ids | |
| def getImgIds(self, imgIds=[], catIds=[]): | |
| ''' | |
| Get img ids that satisfy given filter conditions. | |
| :param imgIds (int array) : get imgs for given ids | |
| :param catIds (int array) : get imgs with all given cats | |
| :return: ids (int array) : integer array of img ids | |
| ''' | |
| imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] | |
| catIds = catIds if _isArrayLike(catIds) else [catIds] | |
| if len(imgIds) == len(catIds) == 0: | |
| ids = self.imgs.keys() | |
| else: | |
| ids = set(imgIds) | |
| for i, catId in enumerate(catIds): | |
| if i == 0 and len(ids) == 0: | |
| ids = set(self.catToImgs[catId]) | |
| else: | |
| ids &= set(self.catToImgs[catId]) | |
| return list(ids) | |
| def loadAnns(self, ids=[]): | |
| """ | |
| Load anns with the specified ids. | |
| :param ids (int array) : integer ids specifying anns | |
| :return: anns (object array) : loaded ann objects | |
| """ | |
| if _isArrayLike(ids): | |
| return [self.anns[id] for id in ids] | |
| elif type(ids) == int: | |
| return [self.anns[ids]] | |
| def loadCats(self, ids=[]): | |
| """ | |
| Load cats with the specified ids. | |
| :param ids (int array) : integer ids specifying cats | |
| :return: cats (object array) : loaded cat objects | |
| """ | |
| if _isArrayLike(ids): | |
| return [self.cats[id] for id in ids] | |
| elif type(ids) == int: | |
| return [self.cats[ids]] | |
| def loadImgs(self, ids=[]): | |
| """ | |
| Load anns with the specified ids. | |
| :param ids (int array) : integer ids specifying img | |
| :return: imgs (object array) : loaded img objects | |
| """ | |
| if _isArrayLike(ids): | |
| return [self.imgs[id] for id in ids] | |
| elif type(ids) == int: | |
| return [self.imgs[ids]] | |
| def showAnns(self, anns, draw_bbox=False): | |
| """ | |
| Display the specified annotations. | |
| :param anns (array of object): annotations to display | |
| :return: None | |
| """ | |
| if len(anns) == 0: | |
| return 0 | |
| if 'segmentation' in anns[0] or 'keypoints' in anns[0]: | |
| datasetType = 'instances' | |
| elif 'caption' in anns[0]: | |
| datasetType = 'captions' | |
| else: | |
| raise Exception('datasetType not supported') | |
| if datasetType == 'instances': | |
| import matplotlib.pyplot as plt | |
| from matplotlib.collections import PatchCollection | |
| from matplotlib.patches import Polygon | |
| ax = plt.gca() | |
| ax.set_autoscale_on(False) | |
| polygons = [] | |
| color = [] | |
| for ann in anns: | |
| c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] | |
| if 'segmentation' in ann: | |
| if type(ann['segmentation']) == list: | |
| # polygon | |
| for seg in ann['segmentation']: | |
| poly = np.array(seg).reshape((int(len(seg)/2), 2)) | |
| polygons.append(Polygon(poly)) | |
| color.append(c) | |
| else: | |
| # mask | |
| t = self.imgs[ann['image_id']] | |
| if type(ann['segmentation']['counts']) == list: | |
| rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) | |
| else: | |
| rle = [ann['segmentation']] | |
| m = maskUtils.decode(rle) | |
| img = np.ones( (m.shape[0], m.shape[1], 3) ) | |
| if ann['iscrowd'] == 1: | |
| color_mask = np.array([2.0,166.0,101.0])/255 | |
| if ann['iscrowd'] == 0: | |
| color_mask = np.random.random((1, 3)).tolist()[0] | |
| for i in range(3): | |
| img[:,:,i] = color_mask[i] | |
| ax.imshow(np.dstack( (img, m*0.5) )) | |
| if 'keypoints' in ann and type(ann['keypoints']) == list: | |
| # turn skeleton into zero-based index | |
| sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 | |
| kp = np.array(ann['keypoints']) | |
| x = kp[0::3] | |
| y = kp[1::3] | |
| v = kp[2::3] | |
| for sk in sks: | |
| if np.all(v[sk]>0): | |
| plt.plot(x[sk],y[sk], linewidth=3, color=c) | |
| plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) | |
| plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) | |
| if draw_bbox: | |
| [bbox_x, bbox_y, bbox_w, bbox_h] = ann['bbox'] | |
| poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] | |
| np_poly = np.array(poly).reshape((4,2)) | |
| polygons.append(Polygon(np_poly)) | |
| color.append(c) | |
| p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) | |
| ax.add_collection(p) | |
| p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) | |
| ax.add_collection(p) | |
| elif datasetType == 'captions': | |
| for ann in anns: | |
| print(ann['caption']) | |
| def loadRes(self, resFile): | |
| """ | |
| Load result file and return a result api object. | |
| :param resFile (str) : file name of result file | |
| :return: res (obj) : result api object | |
| """ | |
| res = COCO() | |
| res.dataset['images'] = [img for img in self.dataset['images']] | |
| print('Loading and preparing results...') | |
| tic = time.time() | |
| if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode): | |
| with open(resFile) as f: | |
| anns = json.load(f) | |
| elif type(resFile) == np.ndarray: | |
| anns = self.loadNumpyAnnotations(resFile) | |
| else: | |
| anns = resFile | |
| assert type(anns) == list, 'results in not an array of objects' | |
| annsImgIds = [ann['image_id'] for ann in anns] | |
| assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ | |
| 'Results do not correspond to current coco set' | |
| if 'caption' in anns[0]: | |
| imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) | |
| res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] | |
| for id, ann in enumerate(anns): | |
| ann['id'] = id+1 | |
| elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: | |
| res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
| for id, ann in enumerate(anns): | |
| bb = ann['bbox'] | |
| x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] | |
| if not 'segmentation' in ann: | |
| ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] | |
| ann['area'] = bb[2]*bb[3] | |
| ann['id'] = id+1 | |
| ann['iscrowd'] = 0 | |
| elif 'segmentation' in anns[0]: | |
| res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
| for id, ann in enumerate(anns): | |
| # now only support compressed RLE format as segmentation results | |
| ann['area'] = maskUtils.area(ann['segmentation']) | |
| if not 'bbox' in ann: | |
| ann['bbox'] = maskUtils.toBbox(ann['segmentation']) | |
| ann['id'] = id+1 | |
| ann['iscrowd'] = 0 | |
| elif 'keypoints' in anns[0]: | |
| res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
| for id, ann in enumerate(anns): | |
| s = ann['keypoints'] | |
| x = s[0::3] | |
| y = s[1::3] | |
| x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) | |
| ann['area'] = (x1-x0)*(y1-y0) | |
| ann['id'] = id + 1 | |
| ann['bbox'] = [x0,y0,x1-x0,y1-y0] | |
| print('DONE (t={:0.2f}s)'.format(time.time()- tic)) | |
| res.dataset['annotations'] = anns | |
| res.createIndex() | |
| return res | |
| def download(self, tarDir = None, imgIds = [] ): | |
| ''' | |
| Download COCO images from mscoco.org server. | |
| :param tarDir (str): COCO results directory name | |
| imgIds (list): images to be downloaded | |
| :return: | |
| ''' | |
| if tarDir is None: | |
| print('Please specify target directory') | |
| return -1 | |
| if len(imgIds) == 0: | |
| imgs = self.imgs.values() | |
| else: | |
| imgs = self.loadImgs(imgIds) | |
| N = len(imgs) | |
| if not os.path.exists(tarDir): | |
| os.makedirs(tarDir) | |
| for i, img in enumerate(imgs): | |
| tic = time.time() | |
| fname = os.path.join(tarDir, img['file_name']) | |
| if not os.path.exists(fname): | |
| urlretrieve(img['coco_url'], fname) | |
| print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) | |
| def loadNumpyAnnotations(self, data): | |
| """ | |
| Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} | |
| :param data (numpy.ndarray) | |
| :return: annotations (python nested list) | |
| """ | |
| print('Converting ndarray to lists...') | |
| assert(type(data) == np.ndarray) | |
| print(data.shape) | |
| assert(data.shape[1] == 7) | |
| N = data.shape[0] | |
| ann = [] | |
| for i in range(N): | |
| if i % 1000000 == 0: | |
| print('{}/{}'.format(i,N)) | |
| ann += [{ | |
| 'image_id' : int(data[i, 0]), | |
| 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], | |
| 'score' : data[i, 5], | |
| 'category_id': int(data[i, 6]), | |
| }] | |
| return ann | |
| def annToRLE(self, ann): | |
| """ | |
| Convert annotation which can be polygons, uncompressed RLE to RLE. | |
| :return: binary mask (numpy 2D array) | |
| """ | |
| t = self.imgs[ann['image_id']] | |
| h, w = t['height'], t['width'] | |
| segm = ann['segmentation'] | |
| if type(segm) == list: | |
| # polygon -- a single object might consist of multiple parts | |
| # we merge all parts into one mask rle code | |
| rles = maskUtils.frPyObjects(segm, h, w) | |
| rle = maskUtils.merge(rles) | |
| elif type(segm['counts']) == list: | |
| # uncompressed RLE | |
| rle = maskUtils.frPyObjects(segm, h, w) | |
| else: | |
| # rle | |
| rle = ann['segmentation'] | |
| return rle | |
| def annToMask(self, ann): | |
| """ | |
| Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. | |
| :return: binary mask (numpy 2D array) | |
| """ | |
| rle = self.annToRLE(ann) | |
| m = maskUtils.decode(rle) | |
| return m | |