Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,180 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import gc
|
| 5 |
+
from typing import Optional
|
| 6 |
|
| 7 |
+
# Check if we're running on Hugging Face Spaces
|
| 8 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
| 9 |
+
|
| 10 |
+
def check_gpu_memory():
|
| 11 |
+
"""Check available GPU memory"""
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
return torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 14 |
+
return 0
|
| 15 |
+
|
| 16 |
+
def load_model():
|
| 17 |
+
"""Load the HunyuanVideo model with error handling"""
|
| 18 |
+
try:
|
| 19 |
+
# For Hugging Face Spaces, we need to be careful with memory
|
| 20 |
+
if IS_SPACES:
|
| 21 |
+
print("Running on Hugging Face Spaces")
|
| 22 |
+
gpu_memory = check_gpu_memory()
|
| 23 |
+
print(f"Available GPU memory: {gpu_memory:.1f} GB")
|
| 24 |
+
|
| 25 |
+
# Try to load the model
|
| 26 |
+
from transformers import AutoModel, AutoTokenizer
|
| 27 |
+
|
| 28 |
+
model_name = "tencent/HunyuanVideo"
|
| 29 |
+
|
| 30 |
+
# Use CPU if no GPU or limited memory
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() and check_gpu_memory() > 8 else "cpu"
|
| 32 |
+
print(f"Using device: {device}")
|
| 33 |
+
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 35 |
+
|
| 36 |
+
# Load model with appropriate settings for Spaces
|
| 37 |
+
model = AutoModel.from_pretrained(
|
| 38 |
+
model_name,
|
| 39 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 40 |
+
device_map="auto" if device == "cuda" else None,
|
| 41 |
+
low_cpu_mem_usage=True
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
return model, tokenizer, device
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error loading model: {e}")
|
| 48 |
+
return None, None, "cpu"
|
| 49 |
+
|
| 50 |
+
# Initialize model
|
| 51 |
+
MODEL, TOKENIZER, DEVICE = load_model()
|
| 52 |
+
|
| 53 |
+
def generate_video(prompt: str, duration: int = 5, resolution: str = "512x512") -> str:
|
| 54 |
+
"""Generate video from text prompt"""
|
| 55 |
+
|
| 56 |
+
if MODEL is None:
|
| 57 |
+
return "β Model not loaded. This might be due to memory limitations on Hugging Face Spaces."
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
# Clear GPU cache if using CUDA
|
| 61 |
+
if DEVICE == "cuda":
|
| 62 |
+
torch.cuda.empty_cache()
|
| 63 |
+
gc.collect()
|
| 64 |
+
|
| 65 |
+
# Parse resolution
|
| 66 |
+
width, height = map(int, resolution.split('x'))
|
| 67 |
+
|
| 68 |
+
# Basic validation
|
| 69 |
+
if not prompt.strip():
|
| 70 |
+
return "β Please enter a valid prompt."
|
| 71 |
+
|
| 72 |
+
if duration < 1 or duration > 10:
|
| 73 |
+
return "β Duration must be between 1-10 seconds."
|
| 74 |
+
|
| 75 |
+
# This is where you would implement the actual video generation
|
| 76 |
+
# For now, return a placeholder message
|
| 77 |
+
return f"""
|
| 78 |
+
β
Video generation request processed:
|
| 79 |
+
|
| 80 |
+
π Prompt: {prompt}
|
| 81 |
+
β±οΈ Duration: {duration} seconds
|
| 82 |
+
π Resolution: {resolution}
|
| 83 |
+
π₯οΈ Device: {DEVICE}
|
| 84 |
+
|
| 85 |
+
Note: Actual video generation implementation needed.
|
| 86 |
+
The model is loaded and ready for inference.
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return f"β Error during generation: {str(e)}"
|
| 91 |
+
|
| 92 |
+
def get_system_info():
|
| 93 |
+
"""Get system information for debugging"""
|
| 94 |
+
info = f"""
|
| 95 |
+
π₯οΈ **System Information:**
|
| 96 |
+
- Python: {os.sys.version.split()[0]}
|
| 97 |
+
- PyTorch: {torch.__version__}
|
| 98 |
+
- CUDA Available: {torch.cuda.is_available()}
|
| 99 |
+
- GPU Memory: {check_gpu_memory():.1f} GB
|
| 100 |
+
- Running on Spaces: {IS_SPACES}
|
| 101 |
+
- Device: {DEVICE}
|
| 102 |
+
- Model Loaded: {'β
' if MODEL is not None else 'β'}
|
| 103 |
+
"""
|
| 104 |
+
return info
|
| 105 |
+
|
| 106 |
+
# Create Gradio interface
|
| 107 |
+
with gr.Blocks(title="HunyuanVideo Generator", theme=gr.themes.Soft()) as demo:
|
| 108 |
+
|
| 109 |
+
gr.Markdown("# π¬ HunyuanVideo Text-to-Video Generator")
|
| 110 |
+
gr.Markdown("Generate videos from text descriptions using the HunyuanVideo model.")
|
| 111 |
+
|
| 112 |
+
with gr.Tab("Generate Video"):
|
| 113 |
+
with gr.Row():
|
| 114 |
+
with gr.Column(scale=1):
|
| 115 |
+
prompt_input = gr.Textbox(
|
| 116 |
+
label="π Video Description",
|
| 117 |
+
placeholder="A cat playing with a ball of yarn in a sunny garden...",
|
| 118 |
+
lines=3,
|
| 119 |
+
max_lines=5
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
duration_slider = gr.Slider(
|
| 124 |
+
minimum=1,
|
| 125 |
+
maximum=10,
|
| 126 |
+
value=5,
|
| 127 |
+
step=1,
|
| 128 |
+
label="β±οΈ Duration (seconds)"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
resolution_dropdown = gr.Dropdown(
|
| 132 |
+
choices=["256x256", "512x512", "768x768", "1024x1024"],
|
| 133 |
+
value="512x512",
|
| 134 |
+
label="π Resolution"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
generate_btn = gr.Button("π¬ Generate Video", variant="primary", size="lg")
|
| 138 |
+
|
| 139 |
+
with gr.Column(scale=1):
|
| 140 |
+
output_text = gr.Textbox(
|
| 141 |
+
label="π Output",
|
| 142 |
+
lines=10,
|
| 143 |
+
show_copy_button=True
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Event handler
|
| 147 |
+
generate_btn.click(
|
| 148 |
+
fn=generate_video,
|
| 149 |
+
inputs=[prompt_input, duration_slider, resolution_dropdown],
|
| 150 |
+
outputs=output_text
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Example prompts
|
| 154 |
+
gr.Examples(
|
| 155 |
+
examples=[
|
| 156 |
+
["A beautiful sunset over a calm ocean with gentle waves", 5, "512x512"],
|
| 157 |
+
["A cat gracefully jumping between rooftops in a medieval town", 7, "768x768"],
|
| 158 |
+
["Cherry blossoms falling in a Japanese garden", 4, "512x512"],
|
| 159 |
+
["A spacecraft flying through a colorful nebula", 8, "1024x1024"]
|
| 160 |
+
],
|
| 161 |
+
inputs=[prompt_input, duration_slider, resolution_dropdown]
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
with gr.Tab("System Info"):
|
| 165 |
+
info_button = gr.Button("π Check System Info")
|
| 166 |
+
info_output = gr.Markdown()
|
| 167 |
+
|
| 168 |
+
info_button.click(
|
| 169 |
+
fn=get_system_info,
|
| 170 |
+
outputs=info_output
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Launch the app
|
| 174 |
+
if __name__ == "__main__":
|
| 175 |
+
demo.launch(
|
| 176 |
+
share=False, # Hugging Face Spaces handles sharing
|
| 177 |
+
server_name="0.0.0.0", # Important for Spaces
|
| 178 |
+
server_port=7860, # Default port for Spaces
|
| 179 |
+
show_error=True
|
| 180 |
+
)
|