Spaces:
Sleeping
Sleeping
DJOMGA TOUKO Peter Charles
commited on
Commit
·
6748588
1
Parent(s):
c358276
initial commit
Browse files- .gitattributes +1 -0
- .gitignore +4 -0
- .streamlit/config.toml +4 -0
- README.md +35 -0
- app.py +147 -0
- app_access_db.py +23 -0
- app_config.py +45 -0
- irembo_application_4.db +3 -0
- openai-business-chat-06-utilitaire.ipynb +0 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.db filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
processed/embeddings.csv
|
| 2 |
+
processed/scraped.csv
|
| 3 |
+
.DS_Store
|
| 4 |
+
__pycache__
|
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[server]
|
| 2 |
+
runOnSave = true
|
| 3 |
+
headless = true
|
| 4 |
+
maxUploadSize = 2000
|
README.md
CHANGED
|
@@ -10,3 +10,38 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# AI Chatbot Prototype on Business Insights
|
| 17 |
+
|
| 18 |
+
Having a sample database with a structure
|
| 19 |
+
```
|
| 20 |
+
- application
|
| 21 |
+
- app_number
|
| 22 |
+
- amount
|
| 23 |
+
- amount_paid
|
| 24 |
+
- state. (APPROVED, REJECTED, PENDING_PAYMENT, PAID)
|
| 25 |
+
- office_code [FK]
|
| 26 |
+
- service_code [FK]
|
| 27 |
+
- date_created
|
| 28 |
+
- date_paid
|
| 29 |
+
- date_processed
|
| 30 |
+
- office
|
| 31 |
+
- office_name
|
| 32 |
+
- office_location_code [FK]
|
| 33 |
+
- location
|
| 34 |
+
- location_name
|
| 35 |
+
- location_code
|
| 36 |
+
- service
|
| 37 |
+
- service_code
|
| 38 |
+
- service_name
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
The chatbot will provide answers from that database
|
| 42 |
+
|
| 43 |
+
```
|
| 44 |
+
a- The number of applications rejected in a location during the current month
|
| 45 |
+
b- The trend of applications in particular states, for a location
|
| 46 |
+
c- Any question you think relevant from this DB
|
| 47 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
from app_config import *
|
| 4 |
+
from app_access_db import *
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
model = "gpt-3.5-turbo"
|
| 8 |
+
|
| 9 |
+
# ------------------------------------------------------------------------------------------------
|
| 10 |
+
# SIDEBAR
|
| 11 |
+
# ------------------------------------------------------------------------------------------------
|
| 12 |
+
st.sidebar.title('OpenAI Business Chat')
|
| 13 |
+
st.sidebar.write('This chat bot is build with Tools and Function feature of OpenAI to be able to answer question regarding applications and performance of officers')
|
| 14 |
+
st.sidebar.markdown("""
|
| 15 |
+
### Having a sample database with a structure
|
| 16 |
+
- application
|
| 17 |
+
- app_number
|
| 18 |
+
- amount
|
| 19 |
+
- amount_paid
|
| 20 |
+
- state. (APPROVED, REJECTED, PENDING_PAYMENT, PAID)
|
| 21 |
+
- office_code [FK]
|
| 22 |
+
- service_code [FK]
|
| 23 |
+
- date_created
|
| 24 |
+
- date_paid
|
| 25 |
+
- date_processed
|
| 26 |
+
- office
|
| 27 |
+
- office_name
|
| 28 |
+
- office_location_code [FK]
|
| 29 |
+
- location
|
| 30 |
+
- location_name
|
| 31 |
+
- location_code
|
| 32 |
+
- service
|
| 33 |
+
- service_code
|
| 34 |
+
- service_name
|
| 35 |
+
|
| 36 |
+
### The chatbot will provide answers from that database
|
| 37 |
+
- The number of applications rejected is a location during the current month
|
| 38 |
+
- The trend of applications in particular states, for a location
|
| 39 |
+
- Any question you think relevant from this DB
|
| 40 |
+
""")
|
| 41 |
+
|
| 42 |
+
def onchange_openai_key():
|
| 43 |
+
print(st.session_state.openai_key)
|
| 44 |
+
|
| 45 |
+
openai_key = st.sidebar.text_input('OpenAI key', on_change=onchange_openai_key, key='openai_key')
|
| 46 |
+
|
| 47 |
+
def submit_openai_key(model=model):
|
| 48 |
+
if(openai_key == None or openai_key==''):
|
| 49 |
+
st.sidebar.write('Please provide the key before')
|
| 50 |
+
return
|
| 51 |
+
else:
|
| 52 |
+
client = OpenAI(api_key=openai_key)
|
| 53 |
+
model = model
|
| 54 |
+
completion = client.chat.completions.create(
|
| 55 |
+
model=model,
|
| 56 |
+
messages=[
|
| 57 |
+
{"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
|
| 58 |
+
{"role": "user", "content": "count from 0 to 10"}
|
| 59 |
+
]
|
| 60 |
+
)
|
| 61 |
+
st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
|
| 62 |
+
|
| 63 |
+
submit_key = st.sidebar.button(label='Submit', on_click=submit_openai_key)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# ------------------------------------------------------------------------------------------------
|
| 68 |
+
# CHAT
|
| 69 |
+
# ------------------------------------------------------------------------------------------------
|
| 70 |
+
|
| 71 |
+
st.title('OpenAI Business Chat')
|
| 72 |
+
st.write(f'Ask any question that can be answer by the LLM {model}.')
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def askQuestion(model=model, question=''):
|
| 76 |
+
if(openai_key == None or openai_key==''):
|
| 77 |
+
print('Please provide the key before')
|
| 78 |
+
return 'LLM API is not defined. Please provide the key before'
|
| 79 |
+
else:
|
| 80 |
+
client = OpenAI(api_key=openai_key)
|
| 81 |
+
model = model
|
| 82 |
+
completion = client.chat.completions.create(
|
| 83 |
+
model=model,
|
| 84 |
+
messages=[
|
| 85 |
+
{"role": "system", "content": f'{query_context}'},
|
| 86 |
+
{"role": "user", "content": f'{question}'}
|
| 87 |
+
]
|
| 88 |
+
)
|
| 89 |
+
return completion.choices[0].message.content
|
| 90 |
+
|
| 91 |
+
class AssistantMessage:
|
| 92 |
+
def __init__(self):
|
| 93 |
+
self.sql : str
|
| 94 |
+
self.response_data : DataFrame
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def displayAssistantMessage( assistantMessage: AssistantMessage):
|
| 99 |
+
with st.chat_message("assistant"):
|
| 100 |
+
st.code(assistantMessage.sql, language='sql')
|
| 101 |
+
st.code(assistantMessage.response_data, language='markdown')
|
| 102 |
+
if assistantMessage.response_data.columns.size == 2:
|
| 103 |
+
st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
|
| 104 |
+
if assistantMessage.response_data.columns.size == 1:
|
| 105 |
+
st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0]}')
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# Initialize chat history
|
| 110 |
+
if "messages" not in st.session_state:
|
| 111 |
+
st.session_state.messages = []
|
| 112 |
+
|
| 113 |
+
# Display chat messages from history on app rerun
|
| 114 |
+
for message in st.session_state.messages:
|
| 115 |
+
if message["role"] == "user":
|
| 116 |
+
with st.chat_message(message["role"]):
|
| 117 |
+
st.markdown(message["content"])
|
| 118 |
+
elif message["role"] == "assistant":
|
| 119 |
+
displayAssistantMessage(message["content"])
|
| 120 |
+
|
| 121 |
+
# React to user input
|
| 122 |
+
if prompt := st.chat_input("What is up?"):
|
| 123 |
+
with st.status('Running', expanded=True) as status:
|
| 124 |
+
# Display user message in chat message container
|
| 125 |
+
st.chat_message("user").markdown(prompt)
|
| 126 |
+
# Add user message to chat history
|
| 127 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 128 |
+
|
| 129 |
+
response = askQuestion(question=prompt)
|
| 130 |
+
st.code(response, language='sql')
|
| 131 |
+
response_data = run_query(response)
|
| 132 |
+
# Display assistant response in chat message container
|
| 133 |
+
assistanMsg = AssistantMessage()
|
| 134 |
+
assistanMsg.sql = response
|
| 135 |
+
assistanMsg.response_data = response_data
|
| 136 |
+
displayAssistantMessage(assistanMsg)
|
| 137 |
+
# with st.chat_message("assistant"):
|
| 138 |
+
# st.code(response, language='sql')
|
| 139 |
+
# st.caption(response_data)
|
| 140 |
+
# st.bar_chart(response_data, x=response_data.columns[0], y=response_data.columns[1])
|
| 141 |
+
|
| 142 |
+
# Add assistant response to chat history
|
| 143 |
+
st.session_state.messages.append({"role": "assistant", "content": assistanMsg})
|
| 144 |
+
status.update(label='Response of last question', state="complete", expanded=True)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
app_access_db.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sqlite3
|
| 2 |
+
from pandas import DataFrame
|
| 3 |
+
|
| 4 |
+
DB_FILENAME = 'irembo_application_4.db'
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def run_query(query=''):
|
| 8 |
+
print(query)
|
| 9 |
+
conn = sqlite3.connect(DB_FILENAME)
|
| 10 |
+
cursor = conn.cursor()
|
| 11 |
+
cursor.execute(query)
|
| 12 |
+
#data = cursor.fetchall()
|
| 13 |
+
#print(data)
|
| 14 |
+
#conn.close()
|
| 15 |
+
|
| 16 |
+
df = DataFrame(cursor.fetchall())
|
| 17 |
+
df.columns = [i[0] for i in cursor.description]
|
| 18 |
+
|
| 19 |
+
# print(f'Field Names : {field_names}')
|
| 20 |
+
print(cursor.description)
|
| 21 |
+
print(df.head())
|
| 22 |
+
conn.close()
|
| 23 |
+
return df
|
app_config.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
query_context = """
|
| 2 |
+
Given the following SQL tables, your job is to write queries given a user’s request.
|
| 3 |
+
|
| 4 |
+
CREATE TABLE application (
|
| 5 |
+
application_id int,
|
| 6 |
+
application_number varchar(10),
|
| 7 |
+
amount int,
|
| 8 |
+
amount_paid int,
|
| 9 |
+
state varchar(10),
|
| 10 |
+
office_code varchar(10),
|
| 11 |
+
service_code varchar(10),
|
| 12 |
+
date_created datetime,
|
| 13 |
+
date_paid datetime,
|
| 14 |
+
date_processed datetime,
|
| 15 |
+
PRIMARY KEY (application_id),
|
| 16 |
+
FOREIGN KEY(office_code) REFERENCES Office(office_code),
|
| 17 |
+
FOREIGN KEY(service_code) REFERENCES Service(service_code)
|
| 18 |
+
|
| 19 |
+
);
|
| 20 |
+
|
| 21 |
+
CREATE TABLE Office (
|
| 22 |
+
office_code varchar(10),
|
| 23 |
+
office_name varchar(20),
|
| 24 |
+
location_code varchar(10),
|
| 25 |
+
PRIMARY KEY (office_code),
|
| 26 |
+
FOREIGN KEY(location_code) REFERENCES location(location_code)
|
| 27 |
+
);
|
| 28 |
+
|
| 29 |
+
CREATE TABLE location (
|
| 30 |
+
location_code varchar(10),
|
| 31 |
+
location_name varchar(20),
|
| 32 |
+
PRIMARY KEY (location_code)
|
| 33 |
+
);
|
| 34 |
+
|
| 35 |
+
CREATE TABLE service (
|
| 36 |
+
service_code varchar(10),
|
| 37 |
+
service_name varchar(20),
|
| 38 |
+
PRIMARY KEY (service_code)
|
| 39 |
+
);
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
Important, The query should be in SQLite format
|
| 43 |
+
Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
|
| 44 |
+
|
| 45 |
+
"""
|
irembo_application_4.db
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7b01b7ad04e5a60032efc417d0ef6165d20d9b367d0cb72bcb056e6714e0019
|
| 3 |
+
size 5910528
|
openai-business-chat-06-utilitaire.ipynb
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
openai
|
| 3 |
+
watchdog
|