File size: 6,511 Bytes
84f584e
 
 
872249c
84f584e
872249c
 
84f584e
 
872249c
84f584e
 
872249c
84f584e
872249c
84f584e
 
 
872249c
84f584e
 
 
872249c
84f584e
 
 
 
 
 
872249c
84f584e
872249c
 
84f584e
 
872249c
84f584e
872249c
84f584e
 
 
 
 
 
872249c
 
84f584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872249c
84f584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872249c
84f584e
 
 
 
 
 
872249c
84f584e
 
 
 
872249c
 
84f584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872249c
84f584e
 
 
 
 
 
 
872249c
 
84f584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872249c
 
84f584e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import spaces

import os
import random
from PIL import Image

import torch
import gradio as gr
import dotenv

from adapter import load_ip_adapter_model, get_file_path
from example import EXAMPLES

dotenv.load_dotenv(".env.local")

ADAPTER_REPO_ID = os.environ.get("ADAPTER_REPO_ID")
ADAPTER_MODEL_PATH = os.environ.get("ADAPTER_MODEL_PATH")
ADAPTER_CONFIG_PATH = os.environ.get("ADAPTER_CONFIG_PATH")

assert ADAPTER_REPO_ID is not None
assert ADAPTER_MODEL_PATH is not None
assert ADAPTER_CONFIG_PATH is not None

BASE_MODEL_REPO_ID = os.environ.get(
    "BASE_MODEL_REPO_ID", "p1atdev/animagine-xl-4.0-bnb-nf4"
)
BASE_MODEL_PATH = os.environ.get(
    "BASE_MODEL_PATH", "animagine-xl-4.0-opt.bnb_nf4.safetensors"
)

INITIAL_BATCH_SIZE = int(os.environ.get("INITIAL_BATCH_SIZE", 1))


adapter_model_path = get_file_path(ADAPTER_REPO_ID, ADAPTER_MODEL_PATH)
adapter_config_path = get_file_path(ADAPTER_REPO_ID, ADAPTER_CONFIG_PATH)

base_model_path = get_file_path(BASE_MODEL_REPO_ID, BASE_MODEL_PATH)

model = load_ip_adapter_model(
    model_path=base_model_path,
    config_path=adapter_config_path,
    adapter_path=adapter_model_path,
)
model.to("cuda:0")


@spaces.GPU
def on_generate(
    prompt: str,
    negative_prompt: str,
    image: Image.Image | None,
    width: int,
    height: int,
    steps: int,
    cfg_scale: float,
    seed: int,
    randomize_seed: bool = True,
    num_images: int = 4,
):
    if image is not None:
        image = image.convert("RGB")

    if randomize_seed:
        seed = random.randint(0, 2147483647)

    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        images = model.generate(
            prompt=[prompt] * num_images,  # batch size 4
            negative_prompt=negative_prompt,
            reference_image=image,
            num_inference_steps=steps,
            cfg_scale=cfg_scale,
            width=width,
            height=height,
            seed=seed,
            do_offloading=False,
            device="cuda:0",
            max_token_length=225,
            execution_dtype=torch.bfloat16,
        )

    torch.cuda.empty_cache()

    return images, seed


def main():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                prompt = gr.TextArea(
                    label="Prompt",
                    value="masterpiece, best quality",
                    placeholder="masterpiece, best quality",
                    interactive=True,
                )
                input_image = gr.Image(
                    label="Reference Image",
                    type="pil",
                    height=600,
                )

                with gr.Accordion("Negative Prompt", open=False):
                    negative_prompt = gr.TextArea(
                        label="Negative Prompt",
                        show_label=False,
                        value="lowres, bad anatomy, bad hands, text, error, missing finger, extra digits, fewer digits, cropped, worst quality, low quality, low score, bad score, average score, signature, watermark, username, blurry",
                        interactive=True,
                    )

                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=2048,
                        step=128,
                        value=896,
                        interactive=True,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=2048,
                        step=128,
                        value=1152,
                        interactive=True,
                    )

                with gr.Accordion("Advanced options", open=False):
                    num_images = gr.Slider(
                        label="Number of images to generate",
                        minimum=1,
                        maximum=8,
                        step=1,
                        value=INITIAL_BATCH_SIZE,
                        interactive=True,
                    )

                    with gr.Row():
                        seed = gr.Slider(
                            label="Seed",
                            minimum=0,
                            maximum=2147483647,
                            step=1,
                            value=0,
                        )
                        randomize_seed = gr.Checkbox(
                            label="Randomize seed",
                            value=True,
                            interactive=True,
                            scale=1,
                        )

                    steps = gr.Slider(
                        label="Inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                        interactive=True,
                    )

                    cfg_scale = gr.Slider(
                        label="CFG scale",
                        minimum=3.0,
                        maximum=8.0,
                        step=0.5,
                        value=5.0,
                        interactive=True,
                    )

            with gr.Column():
                generate_button = gr.Button(
                    "Generate",
                    variant="primary",
                )
                output_image = gr.Gallery(
                    label="Generated images",
                    type="pil",
                    rows=2,
                    height="768px",
                    preview=True,
                    show_label=True,
                )

        comment = gr.Markdown(
            label="Comment",
            visible=False,
        )

        gr.Examples(
            examples=EXAMPLES,
            inputs=[input_image, prompt, width, height, comment],
            cache_examples=False,
        )

        gr.on(
            triggers=[generate_button.click],
            fn=on_generate,
            inputs=[
                prompt,
                negative_prompt,
                input_image,
                width,
                height,
                steps,
                cfg_scale,
                seed,
                randomize_seed,
                num_images,
            ],
            outputs=[output_image, seed],
        )

    demo.launch()


if __name__ == "__main__":
    main()