Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,511 Bytes
84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e 872249c 84f584e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import spaces
import os
import random
from PIL import Image
import torch
import gradio as gr
import dotenv
from adapter import load_ip_adapter_model, get_file_path
from example import EXAMPLES
dotenv.load_dotenv(".env.local")
ADAPTER_REPO_ID = os.environ.get("ADAPTER_REPO_ID")
ADAPTER_MODEL_PATH = os.environ.get("ADAPTER_MODEL_PATH")
ADAPTER_CONFIG_PATH = os.environ.get("ADAPTER_CONFIG_PATH")
assert ADAPTER_REPO_ID is not None
assert ADAPTER_MODEL_PATH is not None
assert ADAPTER_CONFIG_PATH is not None
BASE_MODEL_REPO_ID = os.environ.get(
"BASE_MODEL_REPO_ID", "p1atdev/animagine-xl-4.0-bnb-nf4"
)
BASE_MODEL_PATH = os.environ.get(
"BASE_MODEL_PATH", "animagine-xl-4.0-opt.bnb_nf4.safetensors"
)
INITIAL_BATCH_SIZE = int(os.environ.get("INITIAL_BATCH_SIZE", 1))
adapter_model_path = get_file_path(ADAPTER_REPO_ID, ADAPTER_MODEL_PATH)
adapter_config_path = get_file_path(ADAPTER_REPO_ID, ADAPTER_CONFIG_PATH)
base_model_path = get_file_path(BASE_MODEL_REPO_ID, BASE_MODEL_PATH)
model = load_ip_adapter_model(
model_path=base_model_path,
config_path=adapter_config_path,
adapter_path=adapter_model_path,
)
model.to("cuda:0")
@spaces.GPU
def on_generate(
prompt: str,
negative_prompt: str,
image: Image.Image | None,
width: int,
height: int,
steps: int,
cfg_scale: float,
seed: int,
randomize_seed: bool = True,
num_images: int = 4,
):
if image is not None:
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, 2147483647)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
images = model.generate(
prompt=[prompt] * num_images, # batch size 4
negative_prompt=negative_prompt,
reference_image=image,
num_inference_steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
seed=seed,
do_offloading=False,
device="cuda:0",
max_token_length=225,
execution_dtype=torch.bfloat16,
)
torch.cuda.empty_cache()
return images, seed
def main():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt = gr.TextArea(
label="Prompt",
value="masterpiece, best quality",
placeholder="masterpiece, best quality",
interactive=True,
)
input_image = gr.Image(
label="Reference Image",
type="pil",
height=600,
)
with gr.Accordion("Negative Prompt", open=False):
negative_prompt = gr.TextArea(
label="Negative Prompt",
show_label=False,
value="lowres, bad anatomy, bad hands, text, error, missing finger, extra digits, fewer digits, cropped, worst quality, low quality, low score, bad score, average score, signature, watermark, username, blurry",
interactive=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=128,
value=896,
interactive=True,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=128,
value=1152,
interactive=True,
)
with gr.Accordion("Advanced options", open=False):
num_images = gr.Slider(
label="Number of images to generate",
minimum=1,
maximum=8,
step=1,
value=INITIAL_BATCH_SIZE,
interactive=True,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
interactive=True,
scale=1,
)
steps = gr.Slider(
label="Inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
interactive=True,
)
cfg_scale = gr.Slider(
label="CFG scale",
minimum=3.0,
maximum=8.0,
step=0.5,
value=5.0,
interactive=True,
)
with gr.Column():
generate_button = gr.Button(
"Generate",
variant="primary",
)
output_image = gr.Gallery(
label="Generated images",
type="pil",
rows=2,
height="768px",
preview=True,
show_label=True,
)
comment = gr.Markdown(
label="Comment",
visible=False,
)
gr.Examples(
examples=EXAMPLES,
inputs=[input_image, prompt, width, height, comment],
cache_examples=False,
)
gr.on(
triggers=[generate_button.click],
fn=on_generate,
inputs=[
prompt,
negative_prompt,
input_image,
width,
height,
steps,
cfg_scale,
seed,
randomize_seed,
num_images,
],
outputs=[output_image, seed],
)
demo.launch()
if __name__ == "__main__":
main()
|