Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,84 +4,118 @@ import cv2
|
|
4 |
from ultralytics import YOLO
|
5 |
from pathlib import Path
|
6 |
import tempfile
|
|
|
7 |
|
8 |
-
#
|
9 |
-
model = YOLO('yolov8n.pt') #
|
10 |
|
11 |
def load_custom_model(model_path):
|
12 |
global model
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
frame
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
output_frames = []
|
33 |
-
|
34 |
-
while cap.isOpened():
|
35 |
-
ret, frame = cap.read()
|
36 |
-
if not ret: break
|
37 |
-
|
38 |
-
results = model.predict(source=frame)
|
39 |
-
annotated_frame = results[0].plot()
|
40 |
-
output_frames.append(annotated_frame)
|
41 |
-
|
42 |
-
# 生成临时输出视频
|
43 |
-
output_path = str(Path(tempfile.gettempdir()) / "output.mp4")
|
44 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'),
|
45 |
-
30, (annotated_frame.shape[1], annotated_frame.shape[0]))
|
46 |
-
for f in output_frames:
|
47 |
-
out.write(f)
|
48 |
-
out.release()
|
49 |
-
|
50 |
-
return output_path
|
51 |
|
52 |
# Gradio界面布局
|
53 |
-
with gr.Blocks(title="YOLOv8检测系统") as demo:
|
54 |
-
gr.Markdown("# 🚀 YOLOv8多功能检测系统
|
|
|
55 |
|
56 |
with gr.Tab("⚙️ 模型管理"):
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
with gr.Tab("📷
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
with gr.Tab("🖼️ 图片检测"):
|
68 |
-
|
|
|
|
|
69 |
img_btn = gr.Button("开始检测", variant="primary")
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
with gr.Tab("🎥 视频检测"):
|
73 |
-
|
|
|
|
|
74 |
vid_btn = gr.Button("处理视频", variant="primary")
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
-
demo.
|
84 |
server_name="0.0.0.0",
|
85 |
server_port=7860,
|
86 |
-
|
87 |
)
|
|
|
4 |
from ultralytics import YOLO
|
5 |
from pathlib import Path
|
6 |
import tempfile
|
7 |
+
import os
|
8 |
|
9 |
+
# 初始化默认模型
|
10 |
+
model = YOLO('yolov8n.pt') # 自动下载基础模型
|
11 |
|
12 |
def load_custom_model(model_path):
|
13 |
global model
|
14 |
+
try:
|
15 |
+
model = YOLO(model_path.name) # 适配HuggingFace的文件对象
|
16 |
+
return "✅ 模型加载成功!"
|
17 |
+
except Exception as e:
|
18 |
+
return f"❌ 加载失败:{str(e)}"
|
19 |
|
20 |
+
def process_frame(frame, input_type):
|
21 |
+
# 统一处理函数
|
22 |
+
results = model.predict(
|
23 |
+
source=frame,
|
24 |
+
verbose=False, # 关闭控制台输出
|
25 |
+
device="cpu", # 适配免费Space环境
|
26 |
+
conf=0.5 # 置信度阈值
|
27 |
+
)
|
28 |
+
annotated = results[0].plot()
|
29 |
+
return cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
|
30 |
+
|
31 |
+
def video_pipeline(input_video):
|
32 |
+
# 视频处理优化
|
33 |
+
temp_dir = tempfile.mkdtemp()
|
34 |
+
output_path = os.path.join(temp_dir, "output.mp4")
|
35 |
+
|
36 |
+
cap = cv2.VideoCapture(input_video)
|
37 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
38 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
39 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
40 |
+
|
41 |
+
writer = cv2.VideoWriter(
|
42 |
+
output_path,
|
43 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
44 |
+
fps,
|
45 |
+
(width, height)
|
46 |
+
)
|
47 |
|
48 |
+
while cap.isOpened():
|
49 |
+
ret, frame = cap.read()
|
50 |
+
if not ret: break
|
51 |
+
writer.write(process_frame(frame, "video"))
|
52 |
|
53 |
+
cap.release()
|
54 |
+
writer.release()
|
55 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Gradio界面布局
|
58 |
+
with gr.Blocks(title="YOLOv8检测系统", css=".gradio-container {background: #f0f0f0}") as demo:
|
59 |
+
gr.Markdown("""# 🚀 YOLOv8多功能检测系统
|
60 |
+
*欢迎上传自定义模型或使用默认模型进行检测*""")
|
61 |
|
62 |
with gr.Tab("⚙️ 模型管理"):
|
63 |
+
with gr.Row():
|
64 |
+
model_upload = gr.UploadButton(
|
65 |
+
"上传模型文件 (.pt)",
|
66 |
+
file_types=[".pt"],
|
67 |
+
variant="primary"
|
68 |
+
)
|
69 |
+
model_status = gr.Textbox(label="状态", interactive=False)
|
70 |
+
gr.Examples(
|
71 |
+
examples=["yolov8n.pt", "yolov8s.pt"],
|
72 |
+
inputs=model_upload,
|
73 |
+
label="示例模型"
|
74 |
+
)
|
75 |
|
76 |
+
with gr.Tab("📷 实时检测"):
|
77 |
+
with gr.Row():
|
78 |
+
webcam = gr.Webcam(label="摄像头输入", mirror=True)
|
79 |
+
cam_output = gr.Image(label="检测结果")
|
80 |
+
webcam.stream(
|
81 |
+
fn=lambda x: process_frame(x, "camera"),
|
82 |
+
inputs=webcam,
|
83 |
+
outputs=cam_output,
|
84 |
+
show_progress="hidden"
|
85 |
+
)
|
86 |
|
87 |
with gr.Tab("🖼️ 图片检测"):
|
88 |
+
with gr.Row():
|
89 |
+
img_input = gr.Image(type="filepath", sources=["upload"], label="输入图片")
|
90 |
+
img_output = gr.Image(label="检测结果")
|
91 |
img_btn = gr.Button("开始检测", variant="primary")
|
92 |
+
img_btn.click(
|
93 |
+
fn=lambda x: process_frame(cv2.imread(x), "image"),
|
94 |
+
inputs=img_input,
|
95 |
+
outputs=img_output
|
96 |
+
)
|
97 |
|
98 |
with gr.Tab("🎥 视频检测"):
|
99 |
+
with gr.Row():
|
100 |
+
vid_input = gr.Video(label="输入视频", sources=["upload"])
|
101 |
+
vid_output = gr.Video(label="处理结果")
|
102 |
vid_btn = gr.Button("处理视频", variant="primary")
|
103 |
+
vid_btn.click(
|
104 |
+
fn=video_pipeline,
|
105 |
+
inputs=vid_input,
|
106 |
+
outputs=vid_output
|
107 |
+
)
|
108 |
|
109 |
+
# 模型加载事件
|
110 |
+
model_upload.upload(
|
111 |
+
fn=load_custom_model,
|
112 |
+
inputs=model_upload,
|
113 |
+
outputs=model_status
|
114 |
+
)
|
115 |
|
116 |
if __name__ == "__main__":
|
117 |
+
demo.launch(
|
118 |
server_name="0.0.0.0",
|
119 |
server_port=7860,
|
120 |
+
show_error=True
|
121 |
)
|