Spaces:
Sleeping
Sleeping
Palbha Kulkarni (Nazwale)
commited on
Commit
·
4460c42
1
Parent(s):
bd044ff
Created using Colab
Browse files- faq_data_generator.ipynb +232 -0
faq_data_generator.ipynb
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"authorship_tag": "ABX9TyNAxD9Hy7SaN4kD/p7d0PC5",
|
| 8 |
+
"include_colab_link": true
|
| 9 |
+
},
|
| 10 |
+
"kernelspec": {
|
| 11 |
+
"name": "python3",
|
| 12 |
+
"display_name": "Python 3"
|
| 13 |
+
},
|
| 14 |
+
"language_info": {
|
| 15 |
+
"name": "python"
|
| 16 |
+
}
|
| 17 |
+
},
|
| 18 |
+
"cells": [
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"metadata": {
|
| 22 |
+
"id": "view-in-github",
|
| 23 |
+
"colab_type": "text"
|
| 24 |
+
},
|
| 25 |
+
"source": [
|
| 26 |
+
"<a href=\"https://colab.research.google.com/github/palbha/airline-faq-rag/blob/main/faq_data_generator.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "markdown",
|
| 31 |
+
"source": [
|
| 32 |
+
"# Install necessary libraries if required - This code ran on Google Colab & the libraires where supported by default- please rephrase this\n",
|
| 33 |
+
"\n"
|
| 34 |
+
],
|
| 35 |
+
"metadata": {
|
| 36 |
+
"id": "-Ruq0mXsA9do"
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"source": [
|
| 42 |
+
"import csv\n",
|
| 43 |
+
"import json\n",
|
| 44 |
+
"import os\n",
|
| 45 |
+
"import openai\n",
|
| 46 |
+
"import csv\n",
|
| 47 |
+
"from openai import OpenAI\n",
|
| 48 |
+
"from google.colab import userdata\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"#Based on airlines FAQ I identified potential topics which can be shared with our agent to create FAQ's\n",
|
| 51 |
+
"FAQ_TOPICS = [\n",
|
| 52 |
+
" \"Airport Services\",\n",
|
| 53 |
+
" \"Animal Transportation\",\n",
|
| 54 |
+
" \"Beyond Business\",\n",
|
| 55 |
+
" \"Booking and managing a reservation\",\n",
|
| 56 |
+
" \"Carbon Offsetting\",\n",
|
| 57 |
+
" \"AirlineX Compliance\",\n",
|
| 58 |
+
" \"Hotels, cars and travel insurance\",\n",
|
| 59 |
+
" \"AirlineX Offers\",\n",
|
| 60 |
+
" \"On-board experience\",\n",
|
| 61 |
+
" \"Operational Updates\",\n",
|
| 62 |
+
" \"Payments\",\n",
|
| 63 |
+
" \"Privilege Club : Qatar Airways' loyalty programme\",\n",
|
| 64 |
+
" \"ArlineX Airways Affiliate Program\",\n",
|
| 65 |
+
" \"ArlineX Airways Packages\",\n",
|
| 66 |
+
" \"ATravel - ArlineX Loyalty Program\",\n",
|
| 67 |
+
" \"ATravel - ArlineX Loyalty Program - Account Cancellation\",\n",
|
| 68 |
+
" \"ATravel - ArlineX Loyalty Program - Account Management\",\n",
|
| 69 |
+
" \"ATravel - ArlineX Loyalty Program - Booking Terms and Conditions\",\n",
|
| 70 |
+
" \"Travel Baggage\",\n",
|
| 71 |
+
" \"Baggage\",\n",
|
| 72 |
+
" \"BAGTAG\",\n",
|
| 73 |
+
" \"Hand baggage\",\n",
|
| 74 |
+
" \"Liquids\",\n",
|
| 75 |
+
" \"Mishandled baggage\",\n",
|
| 76 |
+
" \"Travel voucher\",\n",
|
| 77 |
+
" \"Voucher redemption\",\n",
|
| 78 |
+
" \"TripAdd\",\n",
|
| 79 |
+
" \"eSIM - TripAdd\",\n",
|
| 80 |
+
" \"Lounge - TripAdd\",\n",
|
| 81 |
+
" \"Meet and Greet - TripAdd\",\n",
|
| 82 |
+
" \"Young Travellers\",\n",
|
| 83 |
+
" \"Travelling with children\",\n",
|
| 84 |
+
" \"Unaccompanied minors\",\n",
|
| 85 |
+
"]"
|
| 86 |
+
],
|
| 87 |
+
"metadata": {
|
| 88 |
+
"id": "aAvEjDrrRNJE"
|
| 89 |
+
},
|
| 90 |
+
"execution_count": 2,
|
| 91 |
+
"outputs": []
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"source": [
|
| 96 |
+
"openai = OpenAI(\n",
|
| 97 |
+
" base_url=\"https://generativelanguage.googleapis.com/v1beta/\",\n",
|
| 98 |
+
" api_key=userdata.get('gemini_api'),\n",
|
| 99 |
+
")"
|
| 100 |
+
],
|
| 101 |
+
"metadata": {
|
| 102 |
+
"id": "SWnjOAg7BeO_"
|
| 103 |
+
},
|
| 104 |
+
"execution_count": 3,
|
| 105 |
+
"outputs": []
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"source": [
|
| 110 |
+
"def get_faq_ques_for_topic(topic):\n",
|
| 111 |
+
" messages = [\n",
|
| 112 |
+
" {\n",
|
| 113 |
+
" \"role\": \"system\",\n",
|
| 114 |
+
" \"content\": (\n",
|
| 115 |
+
" \"\"\"You are an assistant that generates FAQ-style questions for an airline named Airline X, which operates international and domestic flights in Canada.\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"For each topic, Generate realistic and informative user-style questions for the FAQ topic. Do no include answers\n",
|
| 118 |
+
"\"\"\"\n",
|
| 119 |
+
" )\n",
|
| 120 |
+
" },\n",
|
| 121 |
+
" {\n",
|
| 122 |
+
" \"role\": \"user\",\n",
|
| 123 |
+
" \"content\": f\"Generate FAQ 5-10 questions about the topic: '{topic}'.\"\n",
|
| 124 |
+
" },\n",
|
| 125 |
+
" {\n",
|
| 126 |
+
" \"role\": \"system\",\n",
|
| 127 |
+
" \"content\": \"Return ONLY a valid JSON array of question objects. Do not include answers\"\n",
|
| 128 |
+
" }\n",
|
| 129 |
+
" ]\n",
|
| 130 |
+
" response = openai.chat.completions.create(\n",
|
| 131 |
+
" model=\"gemini-1.5-flash\",\n",
|
| 132 |
+
" messages=messages,\n",
|
| 133 |
+
" temperature=0.7,\n",
|
| 134 |
+
" max_tokens=700,\n",
|
| 135 |
+
" )\n",
|
| 136 |
+
" # The model response should be a JSON array of objects like: [{\"question\": \"...\", \"answer\": \"...\"}, ...]\n",
|
| 137 |
+
" content = response.choices[0].message.content.strip()\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" return content\n",
|
| 141 |
+
"\n"
|
| 142 |
+
],
|
| 143 |
+
"metadata": {
|
| 144 |
+
"id": "64J-8B5hRSMf"
|
| 145 |
+
},
|
| 146 |
+
"execution_count": 4,
|
| 147 |
+
"outputs": []
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"cell_type": "code",
|
| 151 |
+
"source": [
|
| 152 |
+
"def get_faq_ans_for_topic(topic,question):\n",
|
| 153 |
+
" messages = [\n",
|
| 154 |
+
" {\n",
|
| 155 |
+
" \"role\": \"system\",\n",
|
| 156 |
+
" \"content\": (\n",
|
| 157 |
+
" f\"You are an assistant that generates FAQ-style answers for an airline named Airline X, \"\n",
|
| 158 |
+
" f\"which operates international and domestic flights in Canada.\\n\\n\"\n",
|
| 159 |
+
" f\"The FAQ topic is: '{topic}'.\\n\"\n",
|
| 160 |
+
"\n",
|
| 161 |
+
" )\n",
|
| 162 |
+
" },\n",
|
| 163 |
+
" {\n",
|
| 164 |
+
" \"role\": \"user\",\n",
|
| 165 |
+
" \"content\": f\"Generate FAQ answers for the question: '{question}'.\"\n",
|
| 166 |
+
" } ,\n",
|
| 167 |
+
" {\n",
|
| 168 |
+
" \"role\": \"system\",\n",
|
| 169 |
+
" \"content\": \"Provide a clear, self-contained, and factual-sounding answer based on Airline X's own policies. \"\n",
|
| 170 |
+
" \"Do NOT reference any website, support, or external links. Make the answer complete, realistic, \"\n",
|
| 171 |
+
" \"and independent of outside context. Return ONLY answers\"\n",
|
| 172 |
+
" }\n",
|
| 173 |
+
" ]\n",
|
| 174 |
+
" response = openai.chat.completions.create(\n",
|
| 175 |
+
" model=\"gemini-1.5-flash\",\n",
|
| 176 |
+
" messages=messages,\n",
|
| 177 |
+
" temperature=0.7,\n",
|
| 178 |
+
" max_tokens=700,\n",
|
| 179 |
+
" )\n",
|
| 180 |
+
" # The model response should be a JSON array of objects like: [{\"question\": \"...\", \"answer\": \"...\"}, ...]\n",
|
| 181 |
+
" content = response.choices[0].message.content.strip()\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"\n",
|
| 184 |
+
" return content\n",
|
| 185 |
+
"\n"
|
| 186 |
+
],
|
| 187 |
+
"metadata": {
|
| 188 |
+
"id": "wZhnhpHLSi7c"
|
| 189 |
+
},
|
| 190 |
+
"execution_count": 5,
|
| 191 |
+
"outputs": []
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"source": [
|
| 196 |
+
"faq_data = []\n",
|
| 197 |
+
"import re\n",
|
| 198 |
+
"for topic in FAQ_TOPICS:\n",
|
| 199 |
+
" questions=get_faq_ques_for_topic(topic)\n",
|
| 200 |
+
" raw_text = questions.strip()\n",
|
| 201 |
+
" cleaned = re.sub(r\"^```json|```$\", \"\", raw_text, flags=re.IGNORECASE).strip(\"`\\n \")\n",
|
| 202 |
+
"\n",
|
| 203 |
+
" # Now attempt to parse\n",
|
| 204 |
+
" question_data = json.loads(cleaned)\n",
|
| 205 |
+
" for key in question_data:\n",
|
| 206 |
+
" answer=get_faq_ans_for_topic(topic,key['question'])\n",
|
| 207 |
+
" faq_data.append({\n",
|
| 208 |
+
" \"topic\": topic,\n",
|
| 209 |
+
" \"question\": key['question'],\n",
|
| 210 |
+
" \"answer\": answer\n",
|
| 211 |
+
" })\n"
|
| 212 |
+
],
|
| 213 |
+
"metadata": {
|
| 214 |
+
"id": "bzTtCQijTlmq"
|
| 215 |
+
},
|
| 216 |
+
"execution_count": 6,
|
| 217 |
+
"outputs": []
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"source": [
|
| 222 |
+
"import pandas as pd\n",
|
| 223 |
+
"pd.DataFrame(faq_data).to_csv(\"faq_data.csv\",index=False)"
|
| 224 |
+
],
|
| 225 |
+
"metadata": {
|
| 226 |
+
"id": "nKwJfsMEWstr"
|
| 227 |
+
},
|
| 228 |
+
"execution_count": 7,
|
| 229 |
+
"outputs": []
|
| 230 |
+
}
|
| 231 |
+
]
|
| 232 |
+
}
|