palbha's picture
Update app.py
cd52f38 verified
raw
history blame
1.83 kB
import streamlit as st
# Import from the correct package
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.tools import DuckDuckGoSearchRun
import os
# Configure LangChain LLM with Gemini
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=os.getenv("gemini_api"))
# Use DuckDuckGo Search (no API key needed)
ddgs = DuckDuckGoSearchRun()
search_tool = Tool(
name="Web Search",
func=ddgs.run,
description="Searches the web for relevant certification information."
)
# Create LangChain agent
agent = initialize_agent(
tools=[search_tool],
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
def azure_cert_bot(cert_name):
query = f"Microsoft Azure {cert_name} certification curriculum site:microsoft.com"
search_results = ddgs.run(query).split("\n")
prompt = f"Based on the following curriculum details, generate key questions and answers for the {cert_name} certification exam:\n{search_results}"
response = llm.invoke(prompt)
return search_results, response
# Streamlit UI
st.set_page_config(page_title="Azure Certification Prep Assistant", layout="wide")
st.title("Azure Certification Prep Assistant")
cert_name = st.text_input("Enter Azure Certification Name (e.g., AZ-900)", "")
if st.button("Get Certification Details"):
if cert_name:
links, qa_content = azure_cert_bot(cert_name)
st.subheader("Certification Links & Curriculum")
for link in links:
st.markdown(f"- [{link}]({link})")
st.subheader("Exam Questions & Answers")
st.write(qa_content)
else:
st.warning("Please enter a certification name.")