palbha's picture
Rename uapp.py to app.py
db4b2fe verified
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from langchain.agents import initialize_agent, AgentType
from langchain.tools import DuckDuckGoSearchRun
# Streamlit UI Setup
st.set_page_config(page_title="Azure Certification Prep Assistant", layout="wide")
st.markdown("<div class='title'>Azure Certification Prep Assistant</div>", unsafe_allow_html=True)
# User input for API key
user_api_key = st.text_input("πŸ” Enter your Gemini API Key", type="password")
# Certification name input
cert_name = st.text_input("πŸ“˜ Enter Azure Certification Name (e.g., AZ-900)", "")
if st.button("Get Certification Details"):
if not user_api_key:
st.error("Please enter your Gemini API key.")
elif not cert_name:
st.warning("Please enter a certification name.")
else:
try:
# Create LLM and Agent only after API key is provided
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=user_api_key)
ddgs = DuckDuckGoSearchRun()
search_tool = Tool(
name="Web Search",
func=ddgs.run,
description="Searches the web for relevant certification information."
)
agent = initialize_agent(
tools=[search_tool],
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# Define main function
def azure_cert_bot(cert_name):
query = f"Microsoft Azure {cert_name} certification curriculum site:microsoft.com"
search_results = ddgs.run(query).split("\n")
prompt = f"Based on the following curriculum details, generate key questions and answers in markdown format for the {cert_name} certification exam. Do not include any metadata or unnecessary text, only return the formatted Q&A:\n{search_results}"
response = llm.invoke(prompt)
try:
response_text = response.get("content", "No response generated.") if isinstance(response, dict) else response
response_text = "\n".join([line for line in response_text.split("\n") if not line.lower().startswith("content=") and "metadata" not in line.lower()])
except Exception as e:
response_text = f"Error processing response: {str(e)}"
return search_results, response_text
# Run the bot
links, qa_content = azure_cert_bot(cert_name)
st.markdown("<div class='subheader'>Certification Links & Curriculum</div>", unsafe_allow_html=True)
for link in links:
if link.strip():
st.markdown(f"<div class='markdown-text-container'>- <a href='{link}' target='_blank'>{link}</a></div>", unsafe_allow_html=True)
st.markdown("<div class='subheader'>Exam Questions & Answers</div>", unsafe_allow_html=True)
st.markdown(f"<div class='markdown-text-container'>{qa_content}</div>", unsafe_allow_html=True)
except Exception as e:
st.error(f"❌ Error: {str(e)}")