Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
# Load the model | |
moderator = pipeline("text-classification", model="KoalaAI/Text-Moderation") | |
# Visual styling logic | |
def moderate_text(input_text): | |
result = moderator(input_text) | |
label = result[0]['label'] | |
score = round(result[0]['score'] * 100, 2) | |
# Set color and emoji | |
if label == "toxic": | |
color = "#FF4C4C" # Bright red | |
emoji = "π‘" | |
message = "β οΈ Toxic content detected" | |
elif label == "not-toxic": | |
color = "#4CAF50" # Green | |
emoji = "π" | |
message = "β Content is safe" | |
else: | |
color = "#FFD700" # Gold for unsure | |
emoji = "π" | |
message = "β οΈ Uncertain classification" | |
# HTML-formatted response | |
html_output = f""" | |
<div style='padding:1em;border-radius:10px;background-color:{color};color:white;font-weight:bold;font-size:16px'> | |
{emoji} {message} <br> | |
Confidence Score: {score}% | |
</div> | |
""" | |
return html_output | |
# Gradio interface | |
#demo = gr.Interface(fn=moderate_text, inputs="text", outputs="text", title="AISA - Text Moderation", description="Enter your message in **English or Tamil** to check if it's safe or toxic. :)") | |
demo = gr.Interface( | |
fn=moderate_text, | |
inputs="text", | |
outputs=gr.HTML(), | |
title="AISA - Text Moderation", | |
description="Enter your message in **English or Tamil** to check if it's safe or toxic. π" | |
) | |
demo.launch() | |