Spaces:
Sleeping
Sleeping
File size: 4,066 Bytes
a389b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import streamlit as st
import preprocessor, helper
import matplotlib.pyplot as plt
import seaborn as sns
st.sidebar.title("Whatsapp Chat Analyzer")
uploaded_file = st.sidebar.file_uploader("Choose a file")
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
data = bytes_data.decode("utf-8")
df = preprocessor.preprocess(data)
# fetch unique users
user_list = df['user'].unique().tolist()
user_list.remove('group_notification')
user_list.sort()
user_list.insert(0, "Overall")
selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)
if st.sidebar.button("Show Analysis"):
# Stats Area
num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user, df)
st.title("Top Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.header("Total Messages")
st.title(num_messages)
with col2:
st.header("Total Words")
st.title(words)
with col3:
st.header("Media Shared")
st.title(num_media_messages)
with col4:
st.header("Links Shared")
st.title(num_links)
# Monthly timeline
st.title("Monthly Timeline")
timeline = helper.monthly_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(timeline['time'], timeline['message'], color='green')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# Daily timeline
st.title("Daily Timeline")
daily_timeline = helper.daily_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(daily_timeline['only_date'], daily_timeline['message'], color='black')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# Activity map
st.title('Activity Map')
col1, col2 = st.columns(2)
with col1:
st.header("Most busy day")
busy_day = helper.week_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_day.index, busy_day.values, color='purple')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.header("Most busy month")
busy_month = helper.month_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_month.index, busy_month.values, color='orange')
plt.xticks(rotation='vertical')
st.pyplot(fig)
st.title("Weekly Activity Map")
user_heatmap = helper.activity_heatmap(selected_user, df)
fig, ax = plt.subplots()
ax = sns.heatmap(user_heatmap)
st.pyplot(fig)
# Finding the busiest users in the group (Group level)
if selected_user == 'Overall':
st.title('Most Busy Users')
x, new_df = helper.most_busy_users(df)
fig, ax = plt.subplots()
col1, col2 = st.columns(2)
with col1:
ax.bar(x.index, x.values, color='red')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.dataframe(new_df)
# WordCloud
st.title("Wordcloud")
df_wc = helper.create_wordcloud(selected_user, df)
fig, ax = plt.subplots()
ax.imshow(df_wc)
st.pyplot(fig)
# Most common words
most_common_df = helper.most_common_words(selected_user, df)
fig, ax = plt.subplots()
ax.barh(most_common_df[0], most_common_df[1])
plt.xticks(rotation='vertical')
st.title('Most common words')
st.pyplot(fig)
# Emoji analysis
emoji_df = helper.emoji_helper(selected_user, df)
st.title("Emoji Analysis")
col1, col2 = st.columns(2)
with col1:
st.dataframe(emoji_df)
with col2:
fig, ax = plt.subplots()
ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(), autopct="%0.2f")
st.pyplot(fig) |