File size: 4,066 Bytes
a389b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
import preprocessor, helper
import matplotlib.pyplot as plt
import seaborn as sns

st.sidebar.title("Whatsapp Chat Analyzer")

uploaded_file = st.sidebar.file_uploader("Choose a file")
if uploaded_file is not None:
    bytes_data = uploaded_file.getvalue()
    data = bytes_data.decode("utf-8")
    df = preprocessor.preprocess(data)

    # fetch unique users
    user_list = df['user'].unique().tolist()
    user_list.remove('group_notification')
    user_list.sort()
    user_list.insert(0, "Overall")

    selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)

    if st.sidebar.button("Show Analysis"):

        # Stats Area
        num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user, df)
        st.title("Top Statistics")
        col1, col2, col3, col4 = st.columns(4)

        with col1:
            st.header("Total Messages")
            st.title(num_messages)
        with col2:
            st.header("Total Words")
            st.title(words)
        with col3:
            st.header("Media Shared")
            st.title(num_media_messages)
        with col4:
            st.header("Links Shared")
            st.title(num_links)

        # Monthly timeline
        st.title("Monthly Timeline")
        timeline = helper.monthly_timeline(selected_user, df)
        fig, ax = plt.subplots()
        ax.plot(timeline['time'], timeline['message'], color='green')
        plt.xticks(rotation='vertical')
        st.pyplot(fig)

        # Daily timeline
        st.title("Daily Timeline")
        daily_timeline = helper.daily_timeline(selected_user, df)
        fig, ax = plt.subplots()
        ax.plot(daily_timeline['only_date'], daily_timeline['message'], color='black')
        plt.xticks(rotation='vertical')
        st.pyplot(fig)

        # Activity map
        st.title('Activity Map')
        col1, col2 = st.columns(2)

        with col1:
            st.header("Most busy day")
            busy_day = helper.week_activity_map(selected_user, df)
            fig, ax = plt.subplots()
            ax.bar(busy_day.index, busy_day.values, color='purple')
            plt.xticks(rotation='vertical')
            st.pyplot(fig)

        with col2:
            st.header("Most busy month")
            busy_month = helper.month_activity_map(selected_user, df)
            fig, ax = plt.subplots()
            ax.bar(busy_month.index, busy_month.values, color='orange')
            plt.xticks(rotation='vertical')
            st.pyplot(fig)

        st.title("Weekly Activity Map")
        user_heatmap = helper.activity_heatmap(selected_user, df)
        fig, ax = plt.subplots()
        ax = sns.heatmap(user_heatmap)
        st.pyplot(fig)

        # Finding the busiest users in the group (Group level)
        if selected_user == 'Overall':
            st.title('Most Busy Users')
            x, new_df = helper.most_busy_users(df)
            fig, ax = plt.subplots()

            col1, col2 = st.columns(2)

            with col1:
                ax.bar(x.index, x.values, color='red')
                plt.xticks(rotation='vertical')
                st.pyplot(fig)
            with col2:
                st.dataframe(new_df)

        # WordCloud
        st.title("Wordcloud")
        df_wc = helper.create_wordcloud(selected_user, df)
        fig, ax = plt.subplots()
        ax.imshow(df_wc)
        st.pyplot(fig)

        # Most common words
        most_common_df = helper.most_common_words(selected_user, df)
        fig, ax = plt.subplots()
        ax.barh(most_common_df[0], most_common_df[1])
        plt.xticks(rotation='vertical')

        st.title('Most common words')
        st.pyplot(fig)

        # Emoji analysis
        emoji_df = helper.emoji_helper(selected_user, df)
        st.title("Emoji Analysis")

        col1, col2 = st.columns(2)

        with col1:
            st.dataframe(emoji_df)
        with col2:
            fig, ax = plt.subplots()
            ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(), autopct="%0.2f")
            st.pyplot(fig)