Spaces:
Sleeping
Sleeping
File size: 4,755 Bytes
a389b8d 4b88b00 a389b8d 4b88b00 46cc02c 4b88b00 46cc02c a389b8d 46cc02c a389b8d ea85d87 a389b8d fc9f4d7 a389b8d fc9f4d7 a389b8d 4b88b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
import preprocessor, helper
import matplotlib.pyplot as plt
import seaborn as sns
import chardet
st.sidebar.title("Whatsapp Chat Analyzer")
uploaded_file = st.sidebar.file_uploader("Choose a file")
if uploaded_file is not None:
bytes_data = uploaded_file.read()
# Detect the encoding
result = chardet.detect(bytes_data)
encoding = result['encoding']
# Fallback to utf-8 if encoding is None
if encoding is None:
encoding = 'utf-8' # or 'latin1' if utf-8 fails
# Decode with the detected or fallback encoding
try:
data = bytes_data.decode(encoding)
except UnicodeDecodeError:
# If utf-8 decoding fails, fallback to latin1
data = bytes_data.decode('latin1')
df = preprocessor.preprocess(data)
# Fetch unique users
user_list = df['user'].unique().tolist()
if 'group_notification' in user_list:
user_list.remove('group_notification')
user_list.sort()
user_list.insert(0, "Overall")
selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)
if st.sidebar.button("Show Analysis"):
# Stats Area
num_messages, words, num_media_messages, num_links = helper.fetch_stats(selected_user, df)
st.title("Top Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.header("Total Messages")
st.title(num_messages)
with col2:
st.header("Total Words")
st.title(words)
with col3:
st.header("Media Shared")
st.title(num_media_messages)
with col4:
st.header("Links Shared")
st.title(num_links)
# Monthly timeline
st.title("Monthly Timeline")
timeline = helper.monthly_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(timeline['time'], timeline['message'], color='green')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# Daily timeline
st.title("Daily Timeline")
daily_timeline = helper.daily_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(daily_timeline['only_date'], daily_timeline['message'], color='black')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# Activity map
st.title('Activity Map')
col1, col2 = st.columns(2)
with col1:
st.header("Most busy day")
busy_day = helper.week_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_day.index, busy_day.values, color='purple')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.header("Most busy month")
busy_month = helper.month_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_month.index, busy_month.values, color='orange')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# Weekly Activity Map (Heatmap)
st.title("Weekly Activity Map")
user_heatmap = helper.activity_heatmap(selected_user, df)
if not user_heatmap.empty and user_heatmap.notnull().values.any():
fig, ax = plt.subplots()
ax = sns.heatmap(user_heatmap)
st.pyplot(fig)
else:
st.write("Insufficient data to generate a heatmap.")
# Finding the busiest users in the group (Group level)
if selected_user == 'Overall':
st.title('Most Busy Users')
x, new_df = helper.most_busy_users(df)
fig, ax = plt.subplots()
col1, col2 = st.columns(2)
with col1:
ax.bar(x.index, x.values, color='red')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.dataframe(new_df)
# WordCloud
st.title("Wordcloud")
df_wc = helper.create_wordcloud(selected_user, df)
fig, ax = plt.subplots()
ax.imshow(df_wc)
st.pyplot(fig)
# Most common words
most_common_df = helper.most_common_words(selected_user, df)
fig, ax = plt.subplots()
ax.barh(most_common_df[0], most_common_df[1])
plt.xticks(rotation='vertical')
st.title('Most common words')
st.pyplot(fig)
# Emoji analysis
emoji_df = helper.emoji_helper(selected_user, df)
st.title("Emoji Analysis")
col1, col2 = st.columns(2)
with col1:
st.dataframe(emoji_df)
with col2:
fig, ax = plt.subplots()
ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(), autopct="%0.2f")
st.pyplot(fig)
|