Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline # Import the StableDiffusionPipeline class from diffusers
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Define the model ID for Stable Diffusion
|
5 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
6 |
+
|
7 |
+
# Load the pre-trained model
|
8 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
9 |
+
|
10 |
+
# Move the model to GPU if available, otherwise use CPU
|
11 |
+
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Function to generate images based on text prompts
|
14 |
+
def generate_image(prompt, output_path="generated_image.png"):
|
15 |
+
# Generate the image
|
16 |
+
image = pipe(prompt).images[0]
|
17 |
+
|
18 |
+
# Save the generated image
|
19 |
+
image.save(output_path)
|
20 |
+
print(f"Image saved at: {output_path}")
|
21 |
+
|
22 |
+
# Example prompts for image generation
|
23 |
+
prompt1 = "A futuristic city skyline at sunset"
|
24 |
+
generate_image(prompt1, "image1.png")
|
25 |
+
|
26 |
+
prompt2 = "A beautiful landscape from mountains during sunrise"
|
27 |
+
generate_image(prompt2, "image2.png")
|
28 |
+
|
29 |
+
prompt3 = "A beautiful landscape from mountains during sunset"
|
30 |
+
generate_image(prompt3, "image3.png")
|