Spaces:
Sleeping
Sleeping
File size: 15,750 Bytes
da06e55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import logging
from datetime import datetime, timedelta
import random
from typing import List, Dict, Any
import json
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
class Agent:
"""Base class for all agents in the system"""
def __init__(self, name: str):
self.name = name
self.logger = logging.getLogger(f"Agent:{name}")
self.logger.info(f"Agent {name} initialized")
def log_action(self, action: str, details: Any = None):
"""Log an action taken by this agent"""
self.logger.info(f"Action: {action} - Details: {details}")
def __str__(self):
return f"Agent({self.name})"
class JDAnalyzerAgent(Agent):
"""Agent responsible for analyzing job descriptions"""
def __init__(self):
super().__init__("JDAnalyzer")
def analyze_jd(self, jd_text: str) -> Dict:
"""Analyze a job description to extract key information"""
from jd_embedding_utils import generate_jd_embedding, extract_sections
self.log_action("Analyzing job description", {"length": len(jd_text)})
# Extract and generate embeddings
title, embedding = generate_jd_embedding(jd_text)
sections = extract_sections(jd_text)
# Generate summary
summary = self.generate_summary(sections)
result = {
"title": title,
"embedding": embedding,
"sections": sections,
"summary": summary
}
self.log_action("Analysis complete", {"title": title})
return result
def generate_summary(self, sections: Dict) -> str:
"""Generate a human-readable summary of the job description"""
title = sections.get("job_title", "Unknown Position")
# Get responsibilities and qualifications
responsibilities = sections.get("responsibilities", [])
qualifications = sections.get("qualifications", [])
# Generate summary text
summary = f"Position: {title}\n\n"
if responsibilities:
summary += "Key Responsibilities:\n"
# Limit to top 5 responsibilities for brevity
for i, resp in enumerate(responsibilities[:5]):
summary += f"- {resp}\n"
if len(responsibilities) > 5:
summary += f"- Plus {len(responsibilities) - 5} more responsibilities\n"
summary += "\n"
if qualifications:
summary += "Required Qualifications:\n"
# Limit to top 5 qualifications for brevity
for i, qual in enumerate(qualifications[:5]):
summary += f"- {qual}\n"
if len(qualifications) > 5:
summary += f"- Plus {len(qualifications) - 5} more qualifications\n"
return summary
class CVAnalyzerAgent(Agent):
"""Agent responsible for analyzing candidate CVs"""
def __init__(self):
super().__init__("CVAnalyzer")
def process_cv(self, file_path: str, filename: str) -> Dict:
"""Process a CV to extract key information"""
from resume_embedding_utils import pdf_to_text, extract_resume_sections, generate_resume_embedding
self.log_action("Processing CV", {"filename": filename})
# Extract text from PDF
text = pdf_to_text(file_path)
# Parse CV sections
parsed_sections = extract_resume_sections(text)
# Generate section-specific embeddings
section_embeddings = {}
for section in ["experience", "education", "skills", "projects", "certifications", "tech_stack"]:
if section in parsed_sections and parsed_sections[section]:
section_text = " ".join(parsed_sections[section])
if section_text.strip():
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("all-MiniLM-L6-v2")
section_embeddings[section] = model.encode(section_text, convert_to_numpy=True)
# Generate summary
summary = self.generate_summary(parsed_sections)
result = {
"parsed": parsed_sections,
"embedding": section_embeddings,
"text": text,
"summary": summary
}
self.log_action("CV processing complete", {
"sections_found": list(parsed_sections.keys())
})
return result
def generate_summary(self, sections: Dict) -> str:
"""Generate a human-readable summary of the CV"""
name = sections.get("name", ["Unknown Candidate"])[0] if sections.get("name") else "Unknown Candidate"
# Extract key information
skills = sections.get("skills", [])
experience = sections.get("experience", [])
education = sections.get("education", [])
# Generate summary text
summary = f"Candidate: {name}\n\n"
if skills:
summary += "Key Skills:\n"
# Limit to top 5 skills for brevity
for i, skill in enumerate(skills[:5]):
summary += f"- {skill}\n"
if len(skills) > 5:
summary += f"- Plus {len(skills) - 5} more skills\n"
summary += "\n"
if experience:
summary += "Experience:\n"
# Limit to top 3 experiences for brevity
for i, exp in enumerate(experience[:3]):
summary += f"- {exp}\n"
if len(experience) > 3:
summary += f"- Plus {len(experience) - 3} more experiences\n"
summary += "\n"
if education:
summary += "Education:\n"
# Limit to top 2 education entries for brevity
for i, edu in enumerate(education[:2]):
summary += f"- {edu}\n"
return summary
class MatchingAgent(Agent):
"""Agent responsible for matching CVs against job descriptions"""
def __init__(self, threshold: float = 0.7):
super().__init__("Matcher")
self.threshold = threshold
def match_cvs_to_jd(self, jd_data: Dict, cv_data: Dict[str, Dict]) -> Dict:
"""Match multiple CVs against a job description"""
from matcher import match_all_resumes
self.log_action("Starting matching process", {
"jd_title": jd_data.get("title", "Unknown"),
"cv_count": len(cv_data)
})
jd_title = jd_data.get("title", "Unknown Position")
jd_embeddings = jd_data.get("embedding", {})
# Match each CV against the JD
matches = []
for filename, resume_data in cv_data.items():
parsed = resume_data["parsed"]
embedding = resume_data.get("embedding", {})
# Extract name from parsed CV or use filename
name = self._extract_name(parsed, filename)
from matcher import calculate_match_score
score, reasoning = calculate_match_score(jd_embeddings, embedding)
match_data = {
"name": name,
"filename": filename,
"score": score,
"reasoning": reasoning,
"isMatch": score >= self.threshold # Use threshold for matching
}
self.log_action("CV matched", {
"name": name,
"score": score,
"is_match": match_data["isMatch"]
})
matches.append(match_data)
# Sort matches by score in descending order
matches.sort(key=lambda x: x["score"], reverse=True)
result = {"matches": matches}
self.log_action("Matching complete", {
"total_matches": len(matches),
"qualified_matches": sum(1 for m in matches if m["isMatch"])
})
return result
def _extract_name(self, parsed, fallback):
"""Extract name from parsed CV or use fallback"""
from pathlib import Path
if "name" in parsed and parsed["name"] and len(parsed["name"]) > 0:
return parsed["name"][0]
return Path(fallback).stem
class SchedulerAgent(Agent):
"""Agent responsible for scheduling interviews with matched candidates"""
def __init__(self):
super().__init__("Scheduler")
def generate_interview_slots(self, days_ahead: int = 10, slots_per_day: int = 3) -> List[Dict]:
"""Generate available interview time slots for the next N days"""
slots = []
start_date = datetime.now() + timedelta(days=1) # Start from tomorrow
for day in range(days_ahead):
current_date = start_date + timedelta(days=day)
# Skip weekends
if current_date.weekday() >= 5: # 5 = Saturday, 6 = Sunday
continue
# Generate time slots for this day
possible_hours = [9, 10, 11, 13, 14, 15, 16] # 9 AM to 5 PM with lunch break
selected_hours = random.sample(possible_hours, min(slots_per_day, len(possible_hours)))
selected_hours.sort()
for hour in selected_hours:
slot_time = current_date.replace(hour=hour, minute=0, second=0, microsecond=0)
slots.append({
"date": slot_time.strftime("%Y-%m-%d"),
"time": slot_time.strftime("%H:%M"),
"datetime": slot_time,
"formatted": slot_time.strftime("%A, %B %d at %I:%M %p")
})
return slots
def prepare_email_for_candidate(self, candidate: Dict, job_title: str) -> Dict:
"""Prepare an email for a shortlisted candidate with interview slots"""
self.log_action("Preparing email", {"candidate": candidate["name"]})
# Generate interview slots
interview_slots = self.generate_interview_slots(days_ahead=7, slots_per_day=2)
# Format the email content
candidate_name = candidate["name"]
# Create the email content with interview slots
subject = f"Interview Invitation: {job_title} Position"
body = f"""Dear {candidate_name},
We are pleased to inform you that your profile has been shortlisted for the {job_title} position. Your qualifications and experience align well with what we're looking for.
We would like to invite you for an interview. Please select one of the following time slots that works best for you:
"""
# Add the first 3 available slots
for i, slot in enumerate(interview_slots[:3]):
body += f"Option {i+1}: {slot['formatted']}\n"
body += f"""
Please reply to this email with your preferred time slot, or suggest an alternative if none of these work for you.
The interview will be conducted via video call, and the details will be sent once you confirm your availability.
We look forward to speaking with you!
Best regards,
Recruitment Team"""
return {
"to": candidate_name,
"email": self._generate_email_address(candidate_name),
"subject": subject,
"body": body,
"slots": interview_slots[:3]
}
def _generate_email_address(self, name: str) -> str:
"""Generate a placeholder email address from a name"""
# Convert to lowercase, replace spaces with dots, add domain
email = name.lower().replace(" ", ".")
return f"{email}@example.com"
def send_interview_email(self, email_data: Dict) -> Dict:
"""Send an interview invitation email to a candidate"""
from email_utils import send_email
self.log_action("Sending interview email", {
"to": email_data["to"],
"email": email_data["email"]
})
# Call the email utility to send the email
result = send_email(
to_email=email_data["email"],
subject=email_data["subject"],
body=email_data["body"].replace("\n", "<br>")
)
self.log_action("Email sent", {"success": result["success"]})
return result
class AgentCoordinator:
"""Coordinates the activities of all agents in the system"""
def __init__(self):
self.jd_agent = JDAnalyzerAgent()
self.cv_agent = CVAnalyzerAgent()
self.matching_agent = MatchingAgent()
self.scheduler_agent = SchedulerAgent()
self.logger = logging.getLogger("AgentCoordinator")
def process_job_description(self, jd_text: str) -> Dict:
"""Process a job description using the JD agent"""
self.logger.info("Starting job description processing")
return self.jd_agent.analyze_jd(jd_text)
def process_resumes(self, file_paths: List[tuple]) -> Dict[str, Dict]:
"""Process multiple resumes using the CV agent"""
self.logger.info(f"Starting resume processing for {len(file_paths)} files")
results = {}
for filename, file_path in file_paths:
results[filename] = self.cv_agent.process_cv(file_path, filename)
return results
def match_candidates(self, jd_data: Dict, cv_data: Dict[str, Dict]) -> Dict:
"""Match candidates with the job description"""
self.logger.info("Starting candidate matching")
return self.matching_agent.match_cvs_to_jd(jd_data, cv_data)
def schedule_interviews(self, matches: List[Dict], job_title: str) -> List[Dict]:
"""Schedule interviews for matched candidates"""
self.logger.info(f"Scheduling interviews for {len(matches)} candidates")
email_data = []
for candidate in matches:
if candidate["isMatch"]:
email_info = self.scheduler_agent.prepare_email_for_candidate(candidate, job_title)
email_data.append(email_info)
return email_data
def execute_full_workflow(self, jd_text: str, resume_files: List[tuple]) -> Dict:
"""Execute the complete workflow from JD analysis to interview scheduling"""
self.logger.info("Starting full recruitment workflow")
# Step 1: Process the job description
jd_result = self.process_job_description(jd_text)
# Step 2: Process all resumes
resume_results = self.process_resumes(resume_files)
# Step 3: Match candidates with the job
match_results = self.match_candidates(jd_result, resume_results)
# Step 4: Schedule interviews for matched candidates
email_data = self.schedule_interviews(match_results["matches"], jd_result["title"])
return {
"jd": jd_result,
"resumes": resume_results,
"matches": match_results,
"emails": email_data
}
|