Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile, File, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
from pydantic import BaseModel, EmailStr | |
import tempfile | |
import os | |
import shutil | |
from typing import List, Dict, Any | |
import json | |
import numpy as np | |
from pathlib import Path | |
import asyncio | |
from sentence_transformers import SentenceTransformer | |
import sqlite3 | |
from jd_embedding_utils import generate_jd_embedding, extract_sections | |
from resume_embedding_utils import pdf_to_text, extract_resume_sections, generate_resume_embedding | |
from matcher import calculate_match_score, match_all_resumes | |
from email_utils import send_email | |
from agent_framework import AgentCoordinator | |
app = FastAPI() | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
DB_PATH = "/tmp/recruitly.db" | |
# Initialize SQLite database | |
def init_db(): | |
conn = sqlite3.connect("/tmp/recruitly.db") | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS job_descriptions ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
title TEXT, | |
embedding TEXT, | |
sections TEXT, | |
summary TEXT | |
) | |
""") | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS resumes ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
filename TEXT, | |
embedding TEXT, | |
parsed TEXT, | |
summary TEXT | |
) | |
""") | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS matches ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
resume_id INTEGER, | |
jd_id INTEGER, | |
score REAL, | |
reasoning TEXT, | |
FOREIGN KEY (resume_id) REFERENCES resumes (id), | |
FOREIGN KEY (jd_id) REFERENCES job_descriptions (id) | |
) | |
""") | |
conn.commit() | |
conn.close() | |
# Call init_db on startup | |
init_db() | |
# Classes for request/response models | |
class JDRequest(BaseModel): | |
text: str | |
class MatchRequest(BaseModel): | |
jd_sections: Dict[str, List[str]] | |
resume_data: Dict[str, Dict[str, Any]] | |
class EmailRequest(BaseModel): | |
email: str | |
name: str | |
subject: str | |
body: str | |
class ScheduleRequest(BaseModel): | |
candidate_id: str | |
name: str | |
email: str | |
class NumpyEncoder(json.JSONEncoder): | |
def default(self, obj): | |
if isinstance(obj, np.ndarray): | |
return obj.tolist() | |
return json.JSONEncoder.default(self, obj) | |
# Store processed JD and resumes in memory for matching | |
current_session = { | |
"jd": None, | |
"resumes": {}, | |
"agent_coordinator": AgentCoordinator() | |
} | |
# Create a single model instance for reuse | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
def get_embedding(request: JDRequest): | |
"""Process a job description and generate its embedding""" | |
coordinator = current_session["agent_coordinator"] | |
result = coordinator.process_job_description(request.text) | |
# Store in current session | |
current_session["jd"] = result | |
# Convert embedding dictionary properly for JSON response | |
serializable_embedding = json.loads( | |
json.dumps(result["embedding"], cls=NumpyEncoder) | |
) | |
response_data = { | |
"title": result["title"], | |
"embedding": serializable_embedding, | |
"sections": result["sections"], | |
"summary": result.get("summary", "") | |
} | |
return response_data | |
async def upload_resumes(files: List[UploadFile] = File(...)): | |
"""Process multiple resume PDFs and generate embeddings for each""" | |
if not files: | |
raise HTTPException(status_code=400, detail="No files provided") | |
# Create temp directory for saving uploaded files | |
with tempfile.TemporaryDirectory() as temp_dir: | |
resume_results = {} | |
# First save all files to disk to avoid keeping file handles open too long | |
file_paths = [] | |
for file in files: | |
file_path = os.path.join(temp_dir, file.filename) | |
with open(file_path, "wb") as buffer: | |
shutil.copyfileobj(file.file, buffer) | |
file_paths.append((file.filename, file_path)) | |
# Process files in batches to avoid memory issues | |
batch_size = 3 | |
for i in range(0, len(file_paths), batch_size): | |
batch = file_paths[i:i+batch_size] | |
batch_tasks = [] | |
for filename, file_path in batch: | |
batch_tasks.append(process_resume(filename, file_path)) | |
# Process each batch concurrently | |
batch_results = await asyncio.gather(*batch_tasks) | |
# Combine results | |
for filename, result in batch_results: | |
resume_results[filename] = result | |
# Add to current session | |
if "error" not in result: | |
current_session["resumes"][filename] = result | |
# Convert NumPy arrays to lists for JSON response | |
serializable_results = json.loads( | |
json.dumps(resume_results, cls=NumpyEncoder) | |
) | |
return JSONResponse(content=serializable_results) | |
async def process_resume(filename, file_path): | |
"""Process a single resume PDF file""" | |
try: | |
coordinator = current_session["agent_coordinator"] | |
result = coordinator.cv_agent.process_cv(file_path, filename) | |
return filename, result | |
except Exception as e: | |
print(f"Error processing {filename}: {str(e)}") | |
return filename, {"error": str(e)} | |
def match_resumes(): | |
"""Match the current JD with all processed resumes""" | |
jd = current_session["jd"] | |
resumes = current_session["resumes"] | |
if not jd or not resumes: | |
raise HTTPException(status_code=400, detail="Job description or resumes missing") | |
jd_title = jd["title"] | |
jd_embeddings = jd["embedding"] | |
# Match all resumes | |
all_candidates = match_all_resumes(jd_title, jd_embeddings, resumes, threshold=0.8) | |
# Save all candidates to the database | |
conn = sqlite3.connect("recruitly.db") | |
cursor = conn.cursor() | |
for candidate in all_candidates: | |
cursor.execute(""" | |
INSERT INTO matches (resume_id, jd_id, score, reasoning) | |
VALUES (?, ?, ?, ?) | |
""", (candidate.get("resume_id"), jd.get("id"), candidate["score"], json.dumps(candidate["reasoning"]))) | |
conn.commit() | |
conn.close() | |
# Include all candidates in the response | |
return {"candidates": all_candidates} | |
def generate_interview_slots(): | |
"""Generate potential interview time slots""" | |
if not current_session["agent_coordinator"]: | |
raise HTTPException(status_code=400, detail="Agent coordinator not initialized") | |
slots = current_session["agent_coordinator"].scheduler_agent.generate_interview_slots() | |
return {"slots": slots} | |
def prepare_interview_email(candidate_id: str): | |
"""Prepare an interview email for a specific candidate""" | |
if not current_session["jd"]: | |
raise HTTPException(status_code=400, detail="No job description processed") | |
# Find the candidate in the matches | |
matched_candidates = [] | |
if "matches" in current_session: | |
matched_candidates = current_session["matches"]["matches"] | |
candidate = None | |
for match in matched_candidates: | |
if match["name"] == candidate_id or str(match.get("id", "")) == candidate_id: | |
candidate = match | |
break | |
if not candidate: | |
raise HTTPException(status_code=404, detail=f"Candidate {candidate_id} not found") | |
# Generate email content | |
email_data = current_session["agent_coordinator"].scheduler_agent.prepare_email_for_candidate( | |
candidate, | |
current_session["jd"]["title"] | |
) | |
return email_data | |
def send_candidate_email(request: EmailRequest): | |
"""Send an email to a candidate""" | |
try: | |
result = send_email( | |
to_email=request.email, | |
subject=request.subject, | |
body=request.body | |
) | |
if result["success"]: | |
return {"success": True, "message": f"Email sent to {request.name}"} | |
else: | |
raise HTTPException(status_code=500, detail=result["message"]) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def suggest_interview_times(candidate_id: str): | |
"""Suggest available interview time slots for a candidate""" | |
coordinator = current_session["agent_coordinator"] | |
slots = coordinator.scheduler_agent.generate_interview_slots(days_ahead=7, slots_per_day=3) | |
return {"candidate_id": candidate_id, "slots": slots} | |
# Helper function to extract name from parsed resume | |
def _extract_name(parsed, fallback): | |
if "name" in parsed and parsed["name"] and len(parsed["name"]) > 0: | |
return parsed["name"][0] | |
return Path(fallback).stem | |
def clear_session(): | |
"""Clear the current session data""" | |
current_session["jd"] = None | |
current_session["resumes"] = {} | |
return {"message": "Session cleared"} | |
async def read_root(): | |
return {"message": "Welcome to the API!"} | |
async def catch_all(path_name: str): | |
return JSONResponse(status_code=404, content={"message": f"Route '{path_name}' not found"}) | |
async def get_logs(logs: str = None): | |
if logs == "container": | |
# Implement the logic for fetching container logs | |
return JSONResponse(status_code=200, content={"message": "Here are your container logs"}) | |
return JSONResponse(status_code=404, content={"message": "Log type not found"}) | |
async def robots_txt(): | |
return "User-agent: *\nDisallow: /" | |
def test_match(): | |
"""Test endpoint to diagnose matching issues""" | |
test_jd = """We are seeking an innovative and strategic Product Manager to lead the development and execution of new products. The ideal candidate will collaborate with cross-functional teams to define product roadmaps, analyze market trends, and ensure successful product launches. Responsibilities: Define product vision and strategy based on market research and customer needs. Work closely with engineering, design, and marketing teams to develop and launch products. Prioritize features, create roadmaps, and manage product lifecycle. Analyze user feedback and data to optimize product performance. Ensure alignment between business goals and product development. Qualifications: Bachelor's degree in Business, Computer Science, or a related field. Experience in product management, agile methodologies, and market research. Strong analytical, leadership, and communication skills. Familiarity with project management tools and data-driven decision-making.""" | |
# Process the test JD | |
title, embedding = generate_jd_embedding(test_jd) | |
sections = extract_sections(test_jd) | |
# Create a simple test resume with matching sections | |
test_resume = { | |
"skills": ["Product management", "Agile methodologies", "Leadership"], | |
"experience": ["5 years experience in product management", "Led cross-functional teams"], | |
"education": ["Bachelor's degree in Computer Science"], | |
"qualifications": ["Strong analytical skills", "Communication skills"] | |
} | |
# Run the matcher with debug output | |
score, reasoning = calculate_match_score(sections, test_resume) | |
return { | |
"jd_sections": sections, | |
"resume_sections": test_resume, | |
"score": score, | |
"reasoning": reasoning | |
} | |
# Run the app locally | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="127.0.0.1", port=8000) | |