sentiment2-test / app.py
panchadip's picture
Update app.py
338aae0 verified
import streamlit as st
import pandas as pd
import json
import joblib
import os
# Load models from the "models" folder
models_dir = "models"
# distilbert_model = joblib.load(os.path.join(models_dir, "distilbert_model.joblib"))
bert_topic_model = joblib.load(os.path.join(models_dir, "bertopic_model_max_compressed.joblib"))
recommendation_model = joblib.load(os.path.join(models_dir, "recommendation_model.joblib"))
# Streamlit app layout
st.title("Intelligent Customer Feedback Analyzer")
st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.")
# User input for customer feedback file
uploaded_file = st.file_uploader("Upload a Feedback File (CSV, JSON, TXT)", type=["csv", "json", "txt"])
# Function to extract feedback text from different file formats
def extract_feedback(file):
if file.type == "text/csv":
df = pd.read_csv(file)
feedback_text = []
for column in df.columns:
feedback_text.extend(df[column].dropna().astype(str).tolist()) # Include all text in the CSV
return feedback_text
elif file.type == "application/json":
json_data = json.load(file)
feedback_text = []
if isinstance(json_data, list):
feedback_text = [item.get('feedback', '') for item in json_data if 'feedback' in item]
elif isinstance(json_data, dict):
feedback_text = list(json_data.values()) # Include all values if feedback key doesn't exist
return feedback_text
elif file.type == "text/plain":
return [file.getvalue().decode("utf-8")]
else:
return ["Unsupported file type"]
# Display error or feedback extraction status
if uploaded_file:
feedback_text_list = extract_feedback(uploaded_file)
if feedback_text_list:
for feedback_text in feedback_text_list:
if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'):
# Sentiment Analysis
sentiment = distilbert_model.predict([feedback_text])[0] # Get the first result
sentiment_result = 'Positive' if sentiment == 1 else 'Negative'
st.write(f"Sentiment: {sentiment_result}")
# Topic Modeling
topics = bert_topic_model.predict([feedback_text])[0] # Get the first topic
st.write(f"Predicted Topic(s): {topics}")
# Recommendation System
recommendations = recommendation_model.predict([feedback_text])[0] # Get the first recommendation
st.write(f"Recommended Actions: {recommendations}")
else:
st.error("Unable to extract feedback from the file.")
else:
st.info("Please upload a feedback file to analyze.")