Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from scripts.load_models import distilbert_model, bert_topic_model, recommendation_model
|
4 |
+
import gdown
|
5 |
+
# Streamlit app layout
|
6 |
+
st.title("Intelligent Customer Feedback Analyzer")
|
7 |
+
st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.")
|
8 |
+
|
9 |
+
# User input for customer feedback file
|
10 |
+
uploaded_file = st.file_uploader("Upload a Feedback File (CSV, JSON, TXT)", type=["csv", "json", "txt"])
|
11 |
+
|
12 |
+
# Function to extract feedback text from different file formats
|
13 |
+
def extract_feedback(file):
|
14 |
+
if file.type == "text/csv":
|
15 |
+
df = pd.read_csv(file)
|
16 |
+
feedback_text = []
|
17 |
+
for column in df.columns:
|
18 |
+
feedback_text.extend(df[column].dropna().astype(str).tolist()) # Include all text in the CSV
|
19 |
+
return feedback_text
|
20 |
+
elif file.type == "application/json":
|
21 |
+
json_data = json.load(file)
|
22 |
+
feedback_text = []
|
23 |
+
if isinstance(json_data, list):
|
24 |
+
feedback_text = [item.get('feedback', '') for item in json_data if 'feedback' in item]
|
25 |
+
elif isinstance(json_data, dict):
|
26 |
+
feedback_text = list(json_data.values()) # Include all values if feedback key doesn't exist
|
27 |
+
return feedback_text
|
28 |
+
elif file.type == "text/plain":
|
29 |
+
return [file.getvalue().decode("utf-8")]
|
30 |
+
else:
|
31 |
+
return ["Unsupported file type"]
|
32 |
+
|
33 |
+
# Display error or feedback extraction status
|
34 |
+
if uploaded_file:
|
35 |
+
feedback_text_list = extract_feedback(uploaded_file)
|
36 |
+
|
37 |
+
if feedback_text_list:
|
38 |
+
for feedback_text in feedback_text_list:
|
39 |
+
if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'):
|
40 |
+
# Sentiment Analysis
|
41 |
+
sentiment = distilbert_model.predict([feedback_text])
|
42 |
+
sentiment_result = 'Positive' if sentiment == 1 else 'Negative'
|
43 |
+
st.write(f"Sentiment: {sentiment_result}")
|
44 |
+
|
45 |
+
# Topic Modeling
|
46 |
+
topics = bert_topic_model.predict([feedback_text])
|
47 |
+
st.write(f"Predicted Topic(s): {topics}")
|
48 |
+
|
49 |
+
# Recommendation System
|
50 |
+
recommendations = recommendation_model.predict([feedback_text])
|
51 |
+
st.write(f"Recommended Actions: {recommendations}")
|
52 |
+
else:
|
53 |
+
st.error("Unable to extract feedback from the file.")
|
54 |
+
else:
|
55 |
+
st.info("Please upload a feedback file to analyze.")
|
56 |
+
|