Upload folder using huggingface_hub
Browse files- Dockerfile +12 -0
- app.py +87 -0
- classificator.py +11 -0
- extractor.py +159 -0
- models.py +35 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:latest
|
2 |
+
COPY . .
|
3 |
+
WORKDIR /
|
4 |
+
|
5 |
+
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
6 |
+
|
7 |
+
ENV API_KEY=${API_KEY}
|
8 |
+
|
9 |
+
ENV TRANSFORMERS_CACHE=/transformers_cache
|
10 |
+
RUN mkdir -p /transformers_cache && chmod -R 777 /transformers_cache
|
11 |
+
|
12 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from models import CVExtracted, InsertedText, JobAndCV, ClassificationResult, InsertedLink
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
import extractor
|
6 |
+
from datetime import datetime
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
import requests
|
9 |
+
import classificator
|
10 |
+
|
11 |
+
os.environ['TRANSFORMERS_CACHE'] = '/transformers_cache'
|
12 |
+
os.environ['HF_HOME'] = '/transformers_cache'
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
app = FastAPI()
|
17 |
+
@app.get("/", response_model=dict[str, str])
|
18 |
+
def getall():
|
19 |
+
return {"hello":"world"}
|
20 |
+
|
21 |
+
|
22 |
+
@app.post("/ext", response_model=CVExtracted)
|
23 |
+
async def extract(text: InsertedText):
|
24 |
+
dictresult = extractor.predict(text.text)
|
25 |
+
return CVExtracted(**dictresult)
|
26 |
+
|
27 |
+
|
28 |
+
@app.post("/classify", response_model=ClassificationResult)
|
29 |
+
async def classify(body:JobAndCV ):
|
30 |
+
mininmal_start = 0
|
31 |
+
maximal_end = 0
|
32 |
+
positions = []
|
33 |
+
userMajors = []
|
34 |
+
if len(body.cv.experiences) > 0:
|
35 |
+
mininmal_start = datetime.strptime(body.cv.experiences[0]['start'], "%Y-%m-%d").date() if body.cv.experiences[0].get('start') != None else datetime.today().date()
|
36 |
+
maximal_end = datetime.strptime(body.cv.experiences[0]['end'], "%Y-%m-%d").date()
|
37 |
+
for exp in body.cv.experiences:
|
38 |
+
positions.append(exp['position'])
|
39 |
+
if exp.get('end') == None:
|
40 |
+
exp['end'] = datetime.today().strftime("%Y-%m-%d")
|
41 |
+
if datetime.strptime(exp['start'], "%Y-%m-%d").date() < mininmal_start:
|
42 |
+
mininmal_start = datetime.strptime(exp['start'], "%Y-%m-%d").date()
|
43 |
+
if datetime.strptime(exp['end'], "%Y-%m-%d").date() > maximal_end:
|
44 |
+
maximal_end = datetime.strptime(exp['end'], "%Y-%m-%d").date()
|
45 |
+
else:
|
46 |
+
mininmal_start = 0
|
47 |
+
maximal_end = 0
|
48 |
+
|
49 |
+
for edu in body.cv.educations:
|
50 |
+
userMajors.append(edu['major'])
|
51 |
+
|
52 |
+
yoe = (maximal_end - mininmal_start).days//365
|
53 |
+
cv = {
|
54 |
+
"experiences": str(body.cv.experiences),
|
55 |
+
"positions": str(positions),
|
56 |
+
"userMajors": str(userMajors),
|
57 |
+
"skills": str(body.cv.skills),
|
58 |
+
"yoe": yoe
|
59 |
+
}
|
60 |
+
job = {
|
61 |
+
"jobDesc": body.job.jobDesc,
|
62 |
+
"role": body.job.role,
|
63 |
+
"majors": str(body.job.majors),
|
64 |
+
"skills": str(body.job.skills),
|
65 |
+
"minYoE": body.job.minYoE
|
66 |
+
}
|
67 |
+
results = classificator.predict(cv, job)
|
68 |
+
return ClassificationResult(**results)
|
69 |
+
|
70 |
+
@app.post("/cv", response_model=CVExtracted)
|
71 |
+
async def extract(link: InsertedLink):
|
72 |
+
response = requests.get(link.link)
|
73 |
+
if response.status_code == 200:
|
74 |
+
# Open the PDF from bytes in memory
|
75 |
+
pdf_reader = PdfReader(BytesIO(response.content))
|
76 |
+
number_of_pages = len(pdf_reader.pages)
|
77 |
+
# Optionally, read text from the first page
|
78 |
+
page = pdf_reader.pages[0]
|
79 |
+
text = page.extract_text()
|
80 |
+
for i in range(1, number_of_pages):
|
81 |
+
text+= '\n' + pdf_reader.pages[i].extract_text()
|
82 |
+
else:
|
83 |
+
#return error, make 500 because file server error
|
84 |
+
raise HTTPException(status_code=response.status_code, detail="File server error")
|
85 |
+
|
86 |
+
dictresult = extractor.predict(text)
|
87 |
+
return CVExtracted(**dictresult)
|
classificator.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
|
4 |
+
st = SentenceTransformer('all-mpnet-base-v2')
|
5 |
+
|
6 |
+
def predict(cv, job):
|
7 |
+
diffYoe = cv.yoe - job.minimumYoe
|
8 |
+
results = {}
|
9 |
+
results['score'] = 0.6
|
10 |
+
results['is_accepted'] = True
|
11 |
+
return results
|
extractor.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import RobertaTokenizerFast, AutoModelForTokenClassification
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
|
5 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
6 |
+
model = AutoModelForTokenClassification.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
7 |
+
|
8 |
+
id2label = {0: 'O',
|
9 |
+
1: 'B-NAME',
|
10 |
+
3: 'B-NATION',
|
11 |
+
5: 'B-EMAIL',
|
12 |
+
7: 'B-URL',
|
13 |
+
9: 'B-CAMPUS',
|
14 |
+
11: 'B-MAJOR',
|
15 |
+
13: 'B-COMPANY',
|
16 |
+
15: 'B-DESIGNATION',
|
17 |
+
17: 'B-GPA',
|
18 |
+
19: 'B-PHONE NUMBER',
|
19 |
+
21: 'B-ACHIEVEMENT',
|
20 |
+
23: 'B-EXPERIENCES DESC',
|
21 |
+
25: 'B-SKILLS',
|
22 |
+
27: 'B-PROJECTS',
|
23 |
+
2: 'I-NAME',
|
24 |
+
4: 'I-NATION',
|
25 |
+
6: 'I-EMAIL',
|
26 |
+
8: 'I-URL',
|
27 |
+
10: 'I-CAMPUS',
|
28 |
+
12: 'I-MAJOR',
|
29 |
+
14: 'I-COMPANY',
|
30 |
+
16: 'I-DESIGNATION',
|
31 |
+
18: 'I-GPA',
|
32 |
+
20: 'I-PHONE NUMBER',
|
33 |
+
22: 'I-ACHIEVEMENT',
|
34 |
+
24: 'I-EXPERIENCES DESC',
|
35 |
+
26: 'I-SKILLS',
|
36 |
+
28: 'I-PROJECTS'}
|
37 |
+
|
38 |
+
def merge_subwords(tokens, labels):
|
39 |
+
merged_tokens = []
|
40 |
+
merged_labels = []
|
41 |
+
|
42 |
+
current_token = ""
|
43 |
+
current_label = ""
|
44 |
+
|
45 |
+
for token, label in zip(tokens, labels):
|
46 |
+
if token.startswith("Ġ"):
|
47 |
+
if current_token:
|
48 |
+
# Append the accumulated subwords as a new token and label
|
49 |
+
merged_tokens.append(current_token)
|
50 |
+
merged_labels.append(current_label)
|
51 |
+
# Start a new token and label
|
52 |
+
current_token = token[1:] # Remove the 'Ġ'
|
53 |
+
current_label = label
|
54 |
+
else:
|
55 |
+
# Continue accumulating subwords into the current token
|
56 |
+
current_token += token
|
57 |
+
|
58 |
+
# Append the last token and label
|
59 |
+
if current_token:
|
60 |
+
merged_tokens.append(current_token)
|
61 |
+
merged_labels.append(current_label)
|
62 |
+
|
63 |
+
return merged_tokens, merged_labels
|
64 |
+
|
65 |
+
def chunked_inference(text, tokenizer, model, max_length=512):
|
66 |
+
# Tokenize the text with truncation=False to get the full list of tokens
|
67 |
+
tok = re.findall(r'\w+|[^\w\s]', text, re.UNICODE)
|
68 |
+
tokens = tokenizer.tokenize(tok, is_split_into_words=True)
|
69 |
+
# Initialize containers for tokenized inputs
|
70 |
+
input_ids_chunks = []
|
71 |
+
# Decode and print each token
|
72 |
+
print(tokens)
|
73 |
+
# Create chunks of tokens that fit within the model's maximum input size
|
74 |
+
for i in range(0, len(tokens), max_length - 2): # -2 accounts for special tokens [CLS] and [SEP]
|
75 |
+
chunk = tokens[i:i + max_length - 2]
|
76 |
+
# Encode the chunks. Add special tokens via the tokenizer
|
77 |
+
chunk_ids = tokenizer.convert_tokens_to_ids(chunk)
|
78 |
+
chunk_ids = tokenizer.build_inputs_with_special_tokens(chunk_ids)
|
79 |
+
input_ids_chunks.append(chunk_ids)
|
80 |
+
|
81 |
+
# Convert list of token ids into a tensor
|
82 |
+
input_ids_chunks = [torch.tensor(chunk_ids).unsqueeze(0) for chunk_ids in input_ids_chunks]
|
83 |
+
|
84 |
+
# Predictions container
|
85 |
+
predictions = []
|
86 |
+
|
87 |
+
# Process each chunk
|
88 |
+
for input_ids in input_ids_chunks:
|
89 |
+
attention_mask = torch.ones_like(input_ids) # Create an attention mask for the inputs
|
90 |
+
output = model(input_ids, attention_mask=attention_mask)
|
91 |
+
logits = output[0] if isinstance(output, tuple) else output.logits
|
92 |
+
predictions_chunk = torch.argmax(logits, dim=-1).squeeze(0)
|
93 |
+
predictions.append(predictions_chunk[1:-1])
|
94 |
+
|
95 |
+
# Optionally, you can convert predictions to labels here
|
96 |
+
# Flatten the list of tensors into one long tensor for label mapping
|
97 |
+
predictions = torch.cat(predictions, dim=0)
|
98 |
+
predicted_labels = [id2label[pred.item()] for pred in predictions]
|
99 |
+
return merge_subwords(tokens,predicted_labels)
|
100 |
+
|
101 |
+
def process_tokens(tokens, tag_prefix):
|
102 |
+
# Process tokens to extract entities based on the tag prefix
|
103 |
+
entities = []
|
104 |
+
current_entity = {}
|
105 |
+
for token, tag in tokens:
|
106 |
+
if tag.startswith('B-') and tag.endswith(tag_prefix):
|
107 |
+
# Start a new entity
|
108 |
+
if current_entity:
|
109 |
+
# Append the current entity before starting a new one
|
110 |
+
entities.append(current_entity)
|
111 |
+
current_entity = {}
|
112 |
+
current_entity['text'] = token
|
113 |
+
current_entity['type'] = tag
|
114 |
+
elif tag.startswith('I-') and (tag.endswith('GPA') or tag.endswith('URL')) and current_entity:
|
115 |
+
current_entity['text'] += '' + token
|
116 |
+
elif tag.startswith('I-') and tag.endswith(tag_prefix) and current_entity:
|
117 |
+
# Continue the current entity
|
118 |
+
current_entity['text'] += ' ' + token
|
119 |
+
# Append the last entity if there is one
|
120 |
+
if current_entity:
|
121 |
+
entities.append(current_entity)
|
122 |
+
return entities
|
123 |
+
|
124 |
+
def predict(text):
|
125 |
+
tokens, predictions = chunked_inference(text, tokenizer, model)
|
126 |
+
data = list(zip(tokens, predictions))
|
127 |
+
profile = {
|
128 |
+
"name": "",
|
129 |
+
"links": [],
|
130 |
+
"skills": [],
|
131 |
+
"experiences": [],
|
132 |
+
"educations": []
|
133 |
+
}
|
134 |
+
profile['name'] = ' '.join([t for t, p in data if p.endswith('NAME')])
|
135 |
+
|
136 |
+
for skills in process_tokens(data, 'SKILLS'):
|
137 |
+
profile['skills'].append(skills['text'])
|
138 |
+
#Links
|
139 |
+
for links in process_tokens(data, 'URL'):
|
140 |
+
profile['links'].append(links['text'])
|
141 |
+
# Process experiences and education
|
142 |
+
for designation, company, experience_desc in zip(process_tokens(data, 'DESIGNATION'),process_tokens(data, 'CAMPUS'),process_tokens(data, 'EXPERIENCES DESC') ):
|
143 |
+
profile['experiences'].append({
|
144 |
+
"start": None,
|
145 |
+
"end": None,
|
146 |
+
"designation": designation['text'],
|
147 |
+
"company": company['text'], # To be filled in similarly
|
148 |
+
"experience_description": experience_desc['text'] # To be filled in similarly
|
149 |
+
})
|
150 |
+
for major, gpa, campus in zip(process_tokens(data, 'MAJOR'), process_tokens(data, 'GPA'), process_tokens(data, 'CAMPUS')):
|
151 |
+
profile['educations'].append({
|
152 |
+
"start": None,
|
153 |
+
"end": None,
|
154 |
+
"major": major['text'],
|
155 |
+
"campus": campus['text'], # To be filled in similarly
|
156 |
+
"GPA": gpa['text'] # To be filled in similarly
|
157 |
+
})
|
158 |
+
|
159 |
+
return profile
|
models.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel, Field
|
2 |
+
from typing import List, Optional, Any
|
3 |
+
|
4 |
+
class CVExtracted(BaseModel):
|
5 |
+
name: str = Field(...)
|
6 |
+
skills: List[str] = Field(...)
|
7 |
+
links: List[str] = Field(...)
|
8 |
+
experiences: List[dict[str, Any]] = Field(...)
|
9 |
+
educations: List[dict[str, Any]] = Field(...)
|
10 |
+
|
11 |
+
class InsertedText(BaseModel):
|
12 |
+
text: str
|
13 |
+
|
14 |
+
class CVToClassify(BaseModel):
|
15 |
+
educations: List[dict[str, Any]]
|
16 |
+
skills: List[str]
|
17 |
+
experiences: List[dict[str, Any]]
|
18 |
+
|
19 |
+
class JobToClassify(BaseModel):
|
20 |
+
minYoE: int
|
21 |
+
jobDesc: str
|
22 |
+
skills: List[str]
|
23 |
+
role: str
|
24 |
+
majors: List[str]
|
25 |
+
|
26 |
+
|
27 |
+
class JobAndCV(BaseModel):
|
28 |
+
cv: CVToClassify
|
29 |
+
job: JobToClassify
|
30 |
+
|
31 |
+
class ClassificationResult(BaseModel):
|
32 |
+
score: float
|
33 |
+
is_accepted: bool
|
34 |
+
class InsertedLink(BaseModel):
|
35 |
+
link: str
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pydantic
|
3 |
+
fastapi
|
4 |
+
transformers
|
5 |
+
uvicorn[standard]
|
6 |
+
PyPDF2
|
7 |
+
sentence_transformers
|
8 |
+
scikit-learn
|