Update extractor.py
Browse files- extractor.py +158 -158
extractor.py
CHANGED
@@ -1,159 +1,159 @@
|
|
1 |
-
from transformers import RobertaTokenizerFast, AutoModelForTokenClassification
|
2 |
-
import re
|
3 |
-
import torch
|
4 |
-
|
5 |
-
tokenizer = RobertaTokenizerFast.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
6 |
-
model = AutoModelForTokenClassification.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
7 |
-
|
8 |
-
id2label = {0: 'O',
|
9 |
-
1: 'B-NAME',
|
10 |
-
3: 'B-NATION',
|
11 |
-
5: 'B-EMAIL',
|
12 |
-
7: 'B-URL',
|
13 |
-
9: 'B-CAMPUS',
|
14 |
-
11: 'B-MAJOR',
|
15 |
-
13: 'B-COMPANY',
|
16 |
-
15: 'B-DESIGNATION',
|
17 |
-
17: 'B-GPA',
|
18 |
-
19: 'B-PHONE NUMBER',
|
19 |
-
21: 'B-ACHIEVEMENT',
|
20 |
-
23: 'B-EXPERIENCES DESC',
|
21 |
-
25: 'B-SKILLS',
|
22 |
-
27: 'B-PROJECTS',
|
23 |
-
2: 'I-NAME',
|
24 |
-
4: 'I-NATION',
|
25 |
-
6: 'I-EMAIL',
|
26 |
-
8: 'I-URL',
|
27 |
-
10: 'I-CAMPUS',
|
28 |
-
12: 'I-MAJOR',
|
29 |
-
14: 'I-COMPANY',
|
30 |
-
16: 'I-DESIGNATION',
|
31 |
-
18: 'I-GPA',
|
32 |
-
20: 'I-PHONE NUMBER',
|
33 |
-
22: 'I-ACHIEVEMENT',
|
34 |
-
24: 'I-EXPERIENCES DESC',
|
35 |
-
26: 'I-SKILLS',
|
36 |
-
28: 'I-PROJECTS'}
|
37 |
-
|
38 |
-
def merge_subwords(tokens, labels):
|
39 |
-
merged_tokens = []
|
40 |
-
merged_labels = []
|
41 |
-
|
42 |
-
current_token = ""
|
43 |
-
current_label = ""
|
44 |
-
|
45 |
-
for token, label in zip(tokens, labels):
|
46 |
-
if token.startswith("Ġ"):
|
47 |
-
if current_token:
|
48 |
-
# Append the accumulated subwords as a new token and label
|
49 |
-
merged_tokens.append(current_token)
|
50 |
-
merged_labels.append(current_label)
|
51 |
-
# Start a new token and label
|
52 |
-
current_token = token[1:] # Remove the 'Ġ'
|
53 |
-
current_label = label
|
54 |
-
else:
|
55 |
-
# Continue accumulating subwords into the current token
|
56 |
-
current_token += token
|
57 |
-
|
58 |
-
# Append the last token and label
|
59 |
-
if current_token:
|
60 |
-
merged_tokens.append(current_token)
|
61 |
-
merged_labels.append(current_label)
|
62 |
-
|
63 |
-
return merged_tokens, merged_labels
|
64 |
-
|
65 |
-
def chunked_inference(text, tokenizer, model, max_length=512):
|
66 |
-
# Tokenize the text with truncation=False to get the full list of tokens
|
67 |
-
tok = re.findall(r'\w+|[^\w\s]', text, re.UNICODE)
|
68 |
-
tokens = tokenizer.tokenize(tok, is_split_into_words=True)
|
69 |
-
# Initialize containers for tokenized inputs
|
70 |
-
input_ids_chunks = []
|
71 |
-
# Decode and print each token
|
72 |
-
print(tokens)
|
73 |
-
# Create chunks of tokens that fit within the model's maximum input size
|
74 |
-
for i in range(0, len(tokens), max_length - 2): # -2 accounts for special tokens [CLS] and [SEP]
|
75 |
-
chunk = tokens[i:i + max_length - 2]
|
76 |
-
# Encode the chunks. Add special tokens via the tokenizer
|
77 |
-
chunk_ids = tokenizer.convert_tokens_to_ids(chunk)
|
78 |
-
chunk_ids = tokenizer.build_inputs_with_special_tokens(chunk_ids)
|
79 |
-
input_ids_chunks.append(chunk_ids)
|
80 |
-
|
81 |
-
# Convert list of token ids into a tensor
|
82 |
-
input_ids_chunks = [torch.tensor(chunk_ids).unsqueeze(0) for chunk_ids in input_ids_chunks]
|
83 |
-
|
84 |
-
# Predictions container
|
85 |
-
predictions = []
|
86 |
-
|
87 |
-
# Process each chunk
|
88 |
-
for input_ids in input_ids_chunks:
|
89 |
-
attention_mask = torch.ones_like(input_ids) # Create an attention mask for the inputs
|
90 |
-
output = model(input_ids, attention_mask=attention_mask)
|
91 |
-
logits = output[0] if isinstance(output, tuple) else output.logits
|
92 |
-
predictions_chunk = torch.argmax(logits, dim=-1).squeeze(0)
|
93 |
-
predictions.append(predictions_chunk[1:-1])
|
94 |
-
|
95 |
-
# Optionally, you can convert predictions to labels here
|
96 |
-
# Flatten the list of tensors into one long tensor for label mapping
|
97 |
-
predictions = torch.cat(predictions, dim=0)
|
98 |
-
predicted_labels = [id2label[pred.item()] for pred in predictions]
|
99 |
-
return merge_subwords(tokens,predicted_labels)
|
100 |
-
|
101 |
-
def process_tokens(tokens, tag_prefix):
|
102 |
-
# Process tokens to extract entities based on the tag prefix
|
103 |
-
entities = []
|
104 |
-
current_entity = {}
|
105 |
-
for token, tag in tokens:
|
106 |
-
if tag.startswith('B-') and tag.endswith(tag_prefix):
|
107 |
-
# Start a new entity
|
108 |
-
if current_entity:
|
109 |
-
# Append the current entity before starting a new one
|
110 |
-
entities.append(current_entity)
|
111 |
-
current_entity = {}
|
112 |
-
current_entity['text'] = token
|
113 |
-
current_entity['type'] = tag
|
114 |
-
elif tag.startswith('I-') and (
|
115 |
-
current_entity['text'] += '' + token
|
116 |
-
elif tag.startswith('I-') and tag.endswith(tag_prefix) and current_entity:
|
117 |
-
# Continue the current entity
|
118 |
-
current_entity['text'] += ' ' + token
|
119 |
-
# Append the last entity if there is one
|
120 |
-
if current_entity:
|
121 |
-
entities.append(current_entity)
|
122 |
-
return entities
|
123 |
-
|
124 |
-
def predict(text):
|
125 |
-
tokens, predictions = chunked_inference(text, tokenizer, model)
|
126 |
-
data = list(zip(tokens, predictions))
|
127 |
-
profile = {
|
128 |
-
"name": "",
|
129 |
-
"links": [],
|
130 |
-
"skills": [],
|
131 |
-
"experiences": [],
|
132 |
-
"educations": []
|
133 |
-
}
|
134 |
-
profile['name'] = ' '.join([t for t, p in data if p.endswith('NAME')])
|
135 |
-
|
136 |
-
for skills in process_tokens(data, 'SKILLS'):
|
137 |
-
profile['skills'].append(skills['text'])
|
138 |
-
#Links
|
139 |
-
for links in process_tokens(data, 'URL'):
|
140 |
-
profile['links'].append(links['text'])
|
141 |
-
# Process experiences and education
|
142 |
-
for designation, company, experience_desc in zip(process_tokens(data, 'DESIGNATION'),process_tokens(data, '
|
143 |
-
profile['experiences'].append({
|
144 |
-
"start": None,
|
145 |
-
"end": None,
|
146 |
-
"designation": designation['text'],
|
147 |
-
"company": company['text'], # To be filled in similarly
|
148 |
-
"experience_description": experience_desc['text'] # To be filled in similarly
|
149 |
-
})
|
150 |
-
for major, gpa, campus in zip(process_tokens(data, 'MAJOR'), process_tokens(data, 'GPA'), process_tokens(data, 'CAMPUS')):
|
151 |
-
profile['educations'].append({
|
152 |
-
"start": None,
|
153 |
-
"end": None,
|
154 |
-
"major": major['text'],
|
155 |
-
"campus": campus['text'], # To be filled in similarly
|
156 |
-
"GPA": gpa['text'] # To be filled in similarly
|
157 |
-
})
|
158 |
-
|
159 |
return profile
|
|
|
1 |
+
from transformers import RobertaTokenizerFast, AutoModelForTokenClassification
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
|
5 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
6 |
+
model = AutoModelForTokenClassification.from_pretrained("mrfirdauss/robert-base-finetuned-cv")
|
7 |
+
|
8 |
+
id2label = {0: 'O',
|
9 |
+
1: 'B-NAME',
|
10 |
+
3: 'B-NATION',
|
11 |
+
5: 'B-EMAIL',
|
12 |
+
7: 'B-URL',
|
13 |
+
9: 'B-CAMPUS',
|
14 |
+
11: 'B-MAJOR',
|
15 |
+
13: 'B-COMPANY',
|
16 |
+
15: 'B-DESIGNATION',
|
17 |
+
17: 'B-GPA',
|
18 |
+
19: 'B-PHONE NUMBER',
|
19 |
+
21: 'B-ACHIEVEMENT',
|
20 |
+
23: 'B-EXPERIENCES DESC',
|
21 |
+
25: 'B-SKILLS',
|
22 |
+
27: 'B-PROJECTS',
|
23 |
+
2: 'I-NAME',
|
24 |
+
4: 'I-NATION',
|
25 |
+
6: 'I-EMAIL',
|
26 |
+
8: 'I-URL',
|
27 |
+
10: 'I-CAMPUS',
|
28 |
+
12: 'I-MAJOR',
|
29 |
+
14: 'I-COMPANY',
|
30 |
+
16: 'I-DESIGNATION',
|
31 |
+
18: 'I-GPA',
|
32 |
+
20: 'I-PHONE NUMBER',
|
33 |
+
22: 'I-ACHIEVEMENT',
|
34 |
+
24: 'I-EXPERIENCES DESC',
|
35 |
+
26: 'I-SKILLS',
|
36 |
+
28: 'I-PROJECTS'}
|
37 |
+
|
38 |
+
def merge_subwords(tokens, labels):
|
39 |
+
merged_tokens = []
|
40 |
+
merged_labels = []
|
41 |
+
|
42 |
+
current_token = ""
|
43 |
+
current_label = ""
|
44 |
+
|
45 |
+
for token, label in zip(tokens, labels):
|
46 |
+
if token.startswith("Ġ"):
|
47 |
+
if current_token:
|
48 |
+
# Append the accumulated subwords as a new token and label
|
49 |
+
merged_tokens.append(current_token)
|
50 |
+
merged_labels.append(current_label)
|
51 |
+
# Start a new token and label
|
52 |
+
current_token = token[1:] # Remove the 'Ġ'
|
53 |
+
current_label = label
|
54 |
+
else:
|
55 |
+
# Continue accumulating subwords into the current token
|
56 |
+
current_token += token
|
57 |
+
|
58 |
+
# Append the last token and label
|
59 |
+
if current_token:
|
60 |
+
merged_tokens.append(current_token)
|
61 |
+
merged_labels.append(current_label)
|
62 |
+
|
63 |
+
return merged_tokens, merged_labels
|
64 |
+
|
65 |
+
def chunked_inference(text, tokenizer, model, max_length=512):
|
66 |
+
# Tokenize the text with truncation=False to get the full list of tokens
|
67 |
+
tok = re.findall(r'\w+|[^\w\s]', text, re.UNICODE)
|
68 |
+
tokens = tokenizer.tokenize(tok, is_split_into_words=True)
|
69 |
+
# Initialize containers for tokenized inputs
|
70 |
+
input_ids_chunks = []
|
71 |
+
# Decode and print each token
|
72 |
+
print(tokens)
|
73 |
+
# Create chunks of tokens that fit within the model's maximum input size
|
74 |
+
for i in range(0, len(tokens), max_length - 2): # -2 accounts for special tokens [CLS] and [SEP]
|
75 |
+
chunk = tokens[i:i + max_length - 2]
|
76 |
+
# Encode the chunks. Add special tokens via the tokenizer
|
77 |
+
chunk_ids = tokenizer.convert_tokens_to_ids(chunk)
|
78 |
+
chunk_ids = tokenizer.build_inputs_with_special_tokens(chunk_ids)
|
79 |
+
input_ids_chunks.append(chunk_ids)
|
80 |
+
|
81 |
+
# Convert list of token ids into a tensor
|
82 |
+
input_ids_chunks = [torch.tensor(chunk_ids).unsqueeze(0) for chunk_ids in input_ids_chunks]
|
83 |
+
|
84 |
+
# Predictions container
|
85 |
+
predictions = []
|
86 |
+
|
87 |
+
# Process each chunk
|
88 |
+
for input_ids in input_ids_chunks:
|
89 |
+
attention_mask = torch.ones_like(input_ids) # Create an attention mask for the inputs
|
90 |
+
output = model(input_ids, attention_mask=attention_mask)
|
91 |
+
logits = output[0] if isinstance(output, tuple) else output.logits
|
92 |
+
predictions_chunk = torch.argmax(logits, dim=-1).squeeze(0)
|
93 |
+
predictions.append(predictions_chunk[1:-1])
|
94 |
+
|
95 |
+
# Optionally, you can convert predictions to labels here
|
96 |
+
# Flatten the list of tensors into one long tensor for label mapping
|
97 |
+
predictions = torch.cat(predictions, dim=0)
|
98 |
+
predicted_labels = [id2label[pred.item()] for pred in predictions]
|
99 |
+
return merge_subwords(tokens,predicted_labels)
|
100 |
+
|
101 |
+
def process_tokens(tokens, tag_prefix):
|
102 |
+
# Process tokens to extract entities based on the tag prefix
|
103 |
+
entities = []
|
104 |
+
current_entity = {}
|
105 |
+
for token, tag in tokens:
|
106 |
+
if tag.startswith('B-') and tag.endswith(tag_prefix):
|
107 |
+
# Start a new entity
|
108 |
+
if current_entity:
|
109 |
+
# Append the current entity before starting a new one
|
110 |
+
entities.append(current_entity)
|
111 |
+
current_entity = {}
|
112 |
+
current_entity['text'] = token
|
113 |
+
current_entity['type'] = tag
|
114 |
+
elif tag.startswith('I-') and (('GPA') == tag_prefix or tag_prefix == ('URL')) and tag.endswith(tag_prefix) and current_entity:
|
115 |
+
current_entity['text'] += '' + token
|
116 |
+
elif tag.startswith('I-') and tag.endswith(tag_prefix) and current_entity:
|
117 |
+
# Continue the current entity
|
118 |
+
current_entity['text'] += ' ' + token
|
119 |
+
# Append the last entity if there is one
|
120 |
+
if current_entity:
|
121 |
+
entities.append(current_entity)
|
122 |
+
return entities
|
123 |
+
|
124 |
+
def predict(text):
|
125 |
+
tokens, predictions = chunked_inference(text, tokenizer, model)
|
126 |
+
data = list(zip(tokens, predictions))
|
127 |
+
profile = {
|
128 |
+
"name": "",
|
129 |
+
"links": [],
|
130 |
+
"skills": [],
|
131 |
+
"experiences": [],
|
132 |
+
"educations": []
|
133 |
+
}
|
134 |
+
profile['name'] = ' '.join([t for t, p in data if p.endswith('NAME')])
|
135 |
+
|
136 |
+
for skills in process_tokens(data, 'SKILLS'):
|
137 |
+
profile['skills'].append(skills['text'])
|
138 |
+
#Links
|
139 |
+
for links in process_tokens(data, 'URL'):
|
140 |
+
profile['links'].append(links['text'])
|
141 |
+
# Process experiences and education
|
142 |
+
for designation, company, experience_desc in zip(process_tokens(data, 'DESIGNATION'),process_tokens(data, 'COMPANY'),process_tokens(data, 'EXPERIENCES DESC') ):
|
143 |
+
profile['experiences'].append({
|
144 |
+
"start": None,
|
145 |
+
"end": None,
|
146 |
+
"designation": designation['text'],
|
147 |
+
"company": company['text'], # To be filled in similarly
|
148 |
+
"experience_description": experience_desc['text'] # To be filled in similarly
|
149 |
+
})
|
150 |
+
for major, gpa, campus in zip(process_tokens(data, 'MAJOR'), process_tokens(data, 'GPA'), process_tokens(data, 'CAMPUS')):
|
151 |
+
profile['educations'].append({
|
152 |
+
"start": None,
|
153 |
+
"end": None,
|
154 |
+
"major": major['text'],
|
155 |
+
"campus": campus['text'], # To be filled in similarly
|
156 |
+
"GPA": gpa['text'] # To be filled in similarly
|
157 |
+
})
|
158 |
+
|
159 |
return profile
|