interview-ai-detector / gemma2b.py
bearking58's picture
feat: 3 feature classes + main endpoint
ae51d62
raw
history blame
2.37 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from torch.nn.functional import cosine_similarity
from collections import Counter
import numpy as np
class Gemma2BDependencies:
def __init__(self, question: str, answer: str):
self.question = question
self.answer = answer
self.tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
self.model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
self.device = torch.device("cuda")
self.model.to(self.device)
def calculate_perplexity(self):
inputs = self.tokenizer(self.answer, return_tensors="pt",
truncation=True, max_length=1024)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Calculate the model's output
with torch.no_grad():
outputs = self.model(**inputs, labels=inputs["input_ids"])
loss = outputs.loss
perplexity = torch.exp(loss)
return perplexity.item()
def calculate_burstiness(self):
# Tokenize the text using GPT-2 tokenizer
tokens = self.tokenizer.tokenize(self.answer)
# Count token frequencies
frequency_counts = list(Counter(tokens).values())
# Calculate variance and mean of frequencies
variance = np.var(frequency_counts)
mean = np.mean(frequency_counts)
# Compute Variance-to-Mean Ratio (VMR) for burstiness
vmr = variance / mean if mean > 0 else 0
return vmr
def get_embedding(self):
inputs = self.tokenizer(self.text, return_tensors="pt",
truncation=True, max_length=1024)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
last_hidden_states = outputs.hidden_states[-1]
# Average the token embeddings to get a sentence-level embedding
embedding = torch.mean(last_hidden_states, dim=1)
return embedding
def calculate_cosine_similarity(self):
embedding1 = self.get_embedding(self.question)
embedding2 = self.get_embedding(self.answer)
# Ensure the embeddings are in the correct shape for cosine_similarity
return cosine_similarity(embedding1, embedding2).item()