Spaces:
Running
Running
from sentence_transformers import SentenceTransformer, util | |
from collections import Counter | |
from langchain_openai import ChatOpenAI | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from google.cloud import secretmanager | |
class SecondaryModelDependencies: | |
def __init__(self): | |
self.text_similarity_model = SentenceTransformer( | |
'sentence-transformers/all-mpnet-base-v2') | |
api_key = self.access_openai_api_key() | |
self.llm_gpt35 = ChatOpenAI( | |
api_key=api_key, model="gpt-3.5-turbo") | |
self.llm_gpt4 = ChatOpenAI( | |
api_key=api_key, model="gpt-4-turbo") | |
def access_openai_api_key(self): | |
client = secretmanager.SecretManagerServiceClient() | |
name = "projects/steady-climate-416810/secrets/OPENAI_API_KEY/versions/1" | |
response = client.access_secret_version(request={"name": name}) | |
return response.payload.data.decode('UTF-8') | |
def calculate_features(self, question: str, answer: str, probability: float, backspace_count: int, typing_duration: int, letter_click_counts: dict[str, int]): | |
backspace_count_normalized = backspace_count / len(answer) | |
typing_duration_normalized = typing_duration / len(answer) | |
letter_discrepancy = self.calculate_letter_discrepancy( | |
answer, letter_click_counts) | |
gpt35_answer = self.generate_gpt35_answer(question) | |
gpt4_answer = self.generate_gpt4_answer(question) | |
cosine_sim_gpt35 = self.calculate_similarity_gpt35( | |
answer, gpt35_answer) | |
cosine_sim_gpt4 = self.calculate_similarity_gpt4(answer, gpt4_answer) | |
return [ | |
probability, backspace_count_normalized, typing_duration_normalized, | |
letter_discrepancy, cosine_sim_gpt35, cosine_sim_gpt4 | |
] | |
def calculate_letter_discrepancy(self, text: str, letter_click_counts: dict[str, int]): | |
# Calculate letter frequencies in the text | |
text_letter_counts = Counter(text.lower()) | |
# Calculate the ratio of click counts to text counts for each letter, adjusting for letters not in text | |
ratios = [letter_click_counts.get(letter, 0) / (text_letter_counts.get(letter, 0) + 1) | |
for letter in "abcdefghijklmnopqrstuvwxyz"] | |
# Average the ratios and normalize by the length of the text | |
average_ratio = sum(ratios) / len(ratios) | |
discrepancy_ratio_normalized = average_ratio / \ | |
(len(text) if len(text) > 0 else 1) | |
return discrepancy_ratio_normalized | |
def generate_gpt35_answer(self, question: str): | |
messages = [ | |
SystemMessage( | |
content="Please answer the following question based solely on your internal knowledge, without external references. Assume you are the human."), | |
HumanMessage(question) | |
] | |
gpt35_answer = self.llm_gpt35.invoke(messages) | |
return gpt35_answer.content | |
def generate_gpt4_answer(self, question: str): | |
messages = [ | |
SystemMessage( | |
content="Please answer the following question based solely on your internal knowledge, without external references. Assume you are the human."), | |
HumanMessage(question) | |
] | |
gpt4_answer = self.llm_gpt4.invoke(messages) | |
return gpt4_answer.content | |
def calculate_similarity_gpt35(self, answer: str, gpt35_answer: str) -> float: | |
embedding1 = self.text_similarity_model.encode( | |
[answer], convert_to_tensor=True) | |
embedding2 = self.text_similarity_model.encode( | |
[gpt35_answer], convert_to_tensor=True) | |
cosine_scores = util.cos_sim(embedding1, embedding2) | |
return cosine_scores.item() | |
def calculate_similarity_gpt4(self, answer: str, gpt4_answer: str) -> float: | |
embedding1 = self.text_similarity_model.encode( | |
[answer], convert_to_tensor=True) | |
embedding2 = self.text_similarity_model.encode( | |
[gpt4_answer], convert_to_tensor=True) | |
cosine_scores = util.cos_sim(embedding1, embedding2) | |
return cosine_scores.item() | |