Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,9 @@ import random
|
|
4 |
import torch
|
5 |
import spaces
|
6 |
from diffusers import DiffusionPipeline
|
7 |
-
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
@@ -15,10 +17,15 @@ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 1024
|
17 |
|
18 |
-
#
|
19 |
-
tag_categories = list(TAGS.keys())
|
20 |
tag_checkboxes = [gr.CheckboxGroup(choices=list(TAGS[k].keys()), label=f"{k} Tags") for k in tag_categories]
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
@spaces.GPU
|
23 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height,
|
24 |
guidance_scale, num_inference_steps, active_tab, *tag_selections,
|
@@ -28,8 +35,16 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height,
|
|
28 |
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {prompt}"
|
29 |
else:
|
30 |
combined_tags = []
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
tag_string = ", ".join(combined_tags)
|
34 |
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {tag_string}"
|
35 |
|
@@ -117,15 +132,21 @@ with gr.Blocks(css=css) as demo:
|
|
117 |
tag_box.render()
|
118 |
tag_tab.select(lambda: "Tag Selection", outputs=active_tab)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
demo.queue().launch()
|
|
|
4 |
import torch
|
5 |
import spaces
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
|
8 |
+
from tags import TAGS
|
9 |
+
import tags_extra
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 1024
|
19 |
|
20 |
+
# Create checkbox groups for original tags
|
21 |
+
tag_categories = list(TAGS.keys())
|
22 |
tag_checkboxes = [gr.CheckboxGroup(choices=list(TAGS[k].keys()), label=f"{k} Tags") for k in tag_categories]
|
23 |
|
24 |
+
# Create checkbox groups for extra tags
|
25 |
+
extra_tag_categories = list(tags_extra.TAGS_EXTRA.keys())
|
26 |
+
extra_tag_checkboxes = [gr.CheckboxGroup(choices=list(tags_extra.TAGS_EXTRA[k].keys()), label=f"{k} Tags (Extra)") for k in extra_tag_categories]
|
27 |
+
|
28 |
+
|
29 |
@spaces.GPU
|
30 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height,
|
31 |
guidance_scale, num_inference_steps, active_tab, *tag_selections,
|
|
|
35 |
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {prompt}"
|
36 |
else:
|
37 |
combined_tags = []
|
38 |
+
|
39 |
+
if active_tab == "Tag Selection":
|
40 |
+
for (tag_name, tag_dict), selected in zip(TAGS.items(), tag_selections[:len(TAGS)]):
|
41 |
+
combined_tags.extend([tag_dict[tag] for tag in selected])
|
42 |
+
elif active_tab == "Extra Tag Selection":
|
43 |
+
offset = len(TAGS)
|
44 |
+
for (tag_name, tag_dict), selected in zip(tags_extra.TAGS_EXTRA.items(),
|
45 |
+
tag_selections[offset:offset+len(tags_extra.TAGS_EXTRA)]):
|
46 |
+
combined_tags.extend([tag_dict[tag] for tag in selected])
|
47 |
+
|
48 |
tag_string = ", ".join(combined_tags)
|
49 |
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {tag_string}"
|
50 |
|
|
|
132 |
tag_box.render()
|
133 |
tag_tab.select(lambda: "Tag Selection", outputs=active_tab)
|
134 |
|
135 |
+
with gr.TabItem("Extra Tag Selection") as extra_tag_tab:
|
136 |
+
for tag_box in extra_tag_checkboxes:
|
137 |
+
tag_box.render()
|
138 |
+
extra_tag_tab.select(lambda: "Extra Tag Selection", outputs=active_tab)
|
139 |
+
|
140 |
+
run_button.click(
|
141 |
+
fn=infer,
|
142 |
+
inputs=[
|
143 |
+
prompt, negative_prompt, seed, randomize_seed,
|
144 |
+
width, height, guidance_scale, num_inference_steps,
|
145 |
+
active_tab,
|
146 |
+
*tag_checkboxes,
|
147 |
+
*extra_tag_checkboxes
|
148 |
+
],
|
149 |
+
outputs=[result, seed, prompt_info]
|
150 |
+
)
|
151 |
|
152 |
demo.queue().launch()
|