Spaces:
Runtime error
Runtime error
File size: 4,036 Bytes
1ca0686 d042411 1ca0686 d042411 9f020c6 1ca0686 d042411 2a79df3 d042411 1ca0686 d042411 1ca0686 d042411 3112e6e d042411 2a79df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import streamlit as st
import pandas as pd
from transformers import pipeline
from pprint import pprint
from datasets import load_dataset
st.title("CS634 - milestone3/4 - Tedi Pano")
@st.cache_resource
def load_data():
dataset_dict = load_dataset('HUPD/hupd',
name='sample',
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date='2016-01-01',
train_filing_end_date='2016-01-21',
val_filing_start_date='2016-01-22',
val_filing_end_date='2016-01-31',
)
st.write('Loading is done!')
return dataset_dict
@st.cache_resource
def training_computation(_dataset_dict):
df = pd.DataFrame(_dataset_dict['train'])
vf = pd.DataFrame(_dataset_dict['validation'])
accepted_rejected = ['ACCEPTED', 'REJECTED']
df = df[df['decision'].isin(accepted_rejected)]
df['patentability_score'] = df['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
vf = vf[vf['decision'].isin(accepted_rejected)]
vf['patentability_score'] = vf['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
st.write("Processed the data")
from sklearn.model_selection import train_test_split
dftrain, dftest = train_test_split(df, test_size = 0.90, random_state = 0)
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
X_dtrain = dftrain['abstract'].tolist()
y_dtrain = dftrain['patentability_score'].tolist()
X_vtrain = vf['abstract'].tolist()
y_vtrain = vf['patentability_score'].tolist()
X_dtest = dftest['abstract'].tolist()
y_dtest = dftest['patentability_score'].tolist()
train_encodings = tokenizer(X_dtrain, truncation=True, padding=True)
val_encodings = tokenizer(X_vtrain, truncation=True, padding=True)
test_encodings = tokenizer(X_dtest, truncation=True, padding=True)
st.write("tokenizing completed!")
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
y_dtrain
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
y_vtrain
))
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
y_dtest
))
st.write("back to dataset!")
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
training_args = TFTrainingArguments(
output_dir='./results',
num_train_epochs=2,
per_device_train_batch_size=128,
per_device_eval_batch_size=256,
warmup_steps=5,
eval_steps=5,
weight_decay=0.01
)
with training_args.strategy.scope():
model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
trainer.train()
st.write("training completed")
return trainer
dataset_dict = load_data()
trainer = training_computation(dataset_dict)
patents = pd.DataFrame(dataset_dict['train'])
patent_selection = st.selectbox("Select Patent",patents['patent_number'])
patent = patents.loc[patents['patent_number'] == patent_selection]
st.write(patent['abstract'])
st.write(patent['claims'])
submitted = st.form_submit_button("Submit")
if submitted:
pat_abstract = patent['abstract'].tolist()
#pat_score = patent['patentability_score'].tolist()
test_encodings = tokenizer(pat_abstract, truncation=True, padding=True)
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings)
))
predictions = trainer.predict(test_dataset)[1]
st.write(predictions)
|