Spaces:
Runtime error
Runtime error
panotedi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline
|
4 |
-
|
|
|
|
|
5 |
from pprint import pprint
|
6 |
from datasets import load_dataset
|
|
|
7 |
|
8 |
st.title("CS634 - milestone3/4 - Tedi Pano")
|
9 |
|
@@ -36,11 +39,14 @@ def training_computation(_dataset_dict):
|
|
36 |
st.write("Processed the data")
|
37 |
|
38 |
|
39 |
-
from sklearn.model_selection import train_test_split
|
40 |
-
dftrain, dftest = train_test_split(df, test_size = 0.90, random_state = 0)
|
41 |
-
vftrain, vftest = train_test_split(df, test_size = 0.90, random_state = 0)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
|
45 |
|
46 |
X_dtrain = dftrain['abstract'].tolist()
|
@@ -58,7 +64,7 @@ def training_computation(_dataset_dict):
|
|
58 |
|
59 |
st.write("tokenizing completed!")
|
60 |
|
61 |
-
|
62 |
|
63 |
train_dataset = tf.data.Dataset.from_tensor_slices((
|
64 |
dict(train_encodings),
|
@@ -75,18 +81,16 @@ def training_computation(_dataset_dict):
|
|
75 |
y_dtest
|
76 |
))
|
77 |
|
78 |
-
st.write("back to dataset!")
|
79 |
|
80 |
-
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
|
81 |
|
82 |
training_args = TFTrainingArguments(
|
83 |
output_dir='./results',
|
84 |
-
num_train_epochs=
|
85 |
-
per_device_train_batch_size=
|
86 |
-
per_device_eval_batch_size=
|
87 |
warmup_steps=5,
|
88 |
-
eval_steps=5
|
89 |
-
weight_decay=0.01
|
90 |
)
|
91 |
|
92 |
|
@@ -99,7 +103,7 @@ def training_computation(_dataset_dict):
|
|
99 |
train_dataset=train_dataset,
|
100 |
eval_dataset=val_dataset
|
101 |
)
|
102 |
-
|
103 |
trainer.train()
|
104 |
|
105 |
st.write("training completed")
|
@@ -111,20 +115,34 @@ trainer = training_computation(dataset_dict)
|
|
111 |
|
112 |
|
113 |
patents = pd.DataFrame(dataset_dict['train'])
|
|
|
|
|
|
|
|
|
114 |
patent_selection = st.selectbox("Select Patent",patents['patent_number'])
|
115 |
|
116 |
patent = patents.loc[patents['patent_number'] == patent_selection]
|
|
|
117 |
st.write(patent['abstract'])
|
118 |
st.write(patent['claims'])
|
119 |
|
120 |
-
submitted = st.form_submit_button("Submit")
|
121 |
|
122 |
-
|
|
|
123 |
pat_abstract = patent['abstract'].tolist()
|
124 |
-
|
|
|
125 |
test_encodings = tokenizer(pat_abstract, truncation=True, padding=True)
|
126 |
test_dataset = tf.data.Dataset.from_tensor_slices((
|
127 |
-
dict(test_encodings)
|
|
|
128 |
))
|
129 |
-
predictions = trainer.predict(test_dataset)
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline
|
4 |
+
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from transformers import DistilBertTokenizerFast
|
7 |
from pprint import pprint
|
8 |
from datasets import load_dataset
|
9 |
+
import tensorflow as tf
|
10 |
|
11 |
st.title("CS634 - milestone3/4 - Tedi Pano")
|
12 |
|
|
|
39 |
st.write("Processed the data")
|
40 |
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
+
dftrain, dftest = train_test_split(df, test_size = 0.99, random_state = None)
|
44 |
+
vftrain, vftest = train_test_split(df, test_size = 0.99, random_state = None)
|
45 |
+
|
46 |
+
#st.write(dftrain.shape[0])
|
47 |
+
#st.write(vftrain.shape[0])
|
48 |
+
|
49 |
+
|
50 |
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
|
51 |
|
52 |
X_dtrain = dftrain['abstract'].tolist()
|
|
|
64 |
|
65 |
st.write("tokenizing completed!")
|
66 |
|
67 |
+
|
68 |
|
69 |
train_dataset = tf.data.Dataset.from_tensor_slices((
|
70 |
dict(train_encodings),
|
|
|
81 |
y_dtest
|
82 |
))
|
83 |
|
84 |
+
#st.write("back to dataset!")
|
85 |
|
|
|
86 |
|
87 |
training_args = TFTrainingArguments(
|
88 |
output_dir='./results',
|
89 |
+
num_train_epochs=1,
|
90 |
+
per_device_train_batch_size=8,
|
91 |
+
per_device_eval_batch_size=16,
|
92 |
warmup_steps=5,
|
93 |
+
eval_steps=5
|
|
|
94 |
)
|
95 |
|
96 |
|
|
|
103 |
train_dataset=train_dataset,
|
104 |
eval_dataset=val_dataset
|
105 |
)
|
106 |
+
st.write("training in progress.....")
|
107 |
trainer.train()
|
108 |
|
109 |
st.write("training completed")
|
|
|
115 |
|
116 |
|
117 |
patents = pd.DataFrame(dataset_dict['train'])
|
118 |
+
accepted_rejected = ['ACCEPTED', 'REJECTED']
|
119 |
+
patents = patents[patents['decision'].isin(accepted_rejected)]
|
120 |
+
patents['patentability_score'] = patents['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
|
121 |
+
|
122 |
patent_selection = st.selectbox("Select Patent",patents['patent_number'])
|
123 |
|
124 |
patent = patents.loc[patents['patent_number'] == patent_selection]
|
125 |
+
#st.write(patent.shape[0])
|
126 |
st.write(patent['abstract'])
|
127 |
st.write(patent['claims'])
|
128 |
|
|
|
129 |
|
130 |
+
with st.form("my_form"):
|
131 |
+
submitted = st.form_submit_button("Submit")
|
132 |
pat_abstract = patent['abstract'].tolist()
|
133 |
+
pat_score = patent['patentability_score'].tolist()
|
134 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
|
135 |
test_encodings = tokenizer(pat_abstract, truncation=True, padding=True)
|
136 |
test_dataset = tf.data.Dataset.from_tensor_slices((
|
137 |
+
dict(test_encodings),
|
138 |
+
pat_score
|
139 |
))
|
140 |
+
predictions = trainer.predict(test_dataset)
|
141 |
+
|
142 |
+
if submitted:
|
143 |
+
if(predictions[1][0] == 1):
|
144 |
+
st.write("Patent is ACCEPTED")
|
145 |
+
st.write("with a certainty of " + str(predictions[0][0][1]))
|
146 |
+
else:
|
147 |
+
st.write("Patent is REJECTED")
|
148 |
+
st.write("with a certainty of " + str(predictions[0][0][0]))
|