Spaces:
Running
Running
import gradio as gr | |
import re | |
import bcrypt | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import tensorflow as tf | |
import os | |
import warnings | |
import requests | |
import json | |
from pages import about, community, user_guide | |
# --- Config --- | |
SUPABASE_URL = "https://fpbuhzbdtzwomjwytqul.supabase.co" | |
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImZwYnVoemJkdHp3b21qd3l0cXVsIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NTE5NDk3NzYsImV4cCI6MjA2NzUyNTc3Nn0.oAa2TNNPQMyOGk63AOMZ7XKcwYvy5m-xoSWyvMZd6FY" | |
SUPABASE_TABLE = "user_details" | |
headers = { | |
"apikey": SUPABASE_API_KEY, | |
"Authorization": f"Bearer {SUPABASE_API_KEY}", | |
"Content-Type": "application/json" | |
} | |
# --- Setup --- | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
warnings.filterwarnings("ignore") | |
np.seterr(all='ignore') | |
MODEL_PATH = "model_15_64.h5" | |
if not os.path.exists(MODEL_PATH): | |
print(f"Model file '{MODEL_PATH}' not found. Creating a dummy model for testing.") | |
dummy_model = tf.keras.Sequential([ | |
tf.keras.layers.Input(shape=(128, 128, 3)), | |
tf.keras.layers.Flatten(), | |
tf.keras.layers.Dense(1, activation='sigmoid') | |
]) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
dummy_model.save(MODEL_PATH) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
deepfake_model = tf.keras.models.load_model(MODEL_PATH) | |
# --- Helpers --- | |
def is_valid_email(email): return re.match(r"[^@]+@[^@]+\.[^@]+", email) | |
def is_valid_phone(phone): return re.match(r"^[0-9]{10}$", phone) | |
def preprocess_image(image): | |
if image.mode != 'RGB': image = image.convert('RGB') | |
image_arr = np.array(image) | |
image_arr = cv2.resize(image_arr, (128, 128)) | |
image_arr = image_arr.astype(np.float32) / 255.0 | |
return np.expand_dims(image_arr, axis=0) | |
def predict_image(image): | |
if image is None: return "Please upload an image first." | |
preprocessed = preprocess_image(image) | |
prediction = deepfake_model.predict(preprocessed)[0][0] | |
confidence = prediction if prediction >= 0.5 else 1 - prediction | |
label = "β Real Image" if prediction >= 0.5 else "β οΈ Fake Image" | |
return f"{label} (Confidence: {confidence:.2%})" | |
def register_user(name, phone, email, gender, password): | |
if not all([name, phone, email, gender, password]): | |
return "β All fields are required for signup." | |
if not is_valid_email(email): return "β Invalid email format." | |
if not is_valid_phone(phone): return "β Phone must be 10 digits." | |
query_url = f"{SUPABASE_URL}/rest/v1/{SUPABASE_TABLE}?email=eq.{email}" | |
r = requests.get(query_url, headers=headers) | |
if r.status_code == 200 and len(r.json()) > 0: | |
return "β οΈ Email already registered." | |
hashed_pw = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode() | |
data = { | |
"name": name, | |
"phone": phone, | |
"email": email, | |
"gender": gender, | |
"password": hashed_pw | |
} | |
r = requests.post(f"{SUPABASE_URL}/rest/v1/{SUPABASE_TABLE}", headers=headers, data=json.dumps(data)) | |
return "β Registration successful! Please log in." if r.status_code == 201 else "β Error during registration." | |
def login_user(email, password): | |
url = f"{SUPABASE_URL}/rest/v1/{SUPABASE_TABLE}?email=eq.{email}" | |
r = requests.get(url, headers=headers) | |
if r.status_code == 200 and r.json(): | |
stored_hash = r.json()[0]["password"] | |
return bcrypt.checkpw(password.encode(), stored_hash.encode()) | |
return False | |
# --- UI --- | |
with gr.Blocks(theme=gr.themes.Soft(), title="VerifiAI - Deepfake Detector") as demo: | |
is_logged_in = gr.State(False) | |
LOGIN_TAB_NAME = "π Login" | |
DETECT_TAB_NAME = "π§ͺ Detect Deepfake" | |
ABOUT_TAB_NAME = "βΉοΈ About" | |
COMMUNITY_TAB_NAME = "π Community" | |
GUIDE_TAB_NAME = "π User Guide" | |
with gr.Tabs(selected=LOGIN_TAB_NAME) as tabs: | |
with gr.Tab(LOGIN_TAB_NAME) as login_tab: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Welcome!", "Login to access the detector, or sign up for a new account.") | |
with gr.Column(scale=2): | |
gr.Markdown("### Login or Sign Up") | |
message_output = gr.Markdown(visible=False) | |
email_login = gr.Textbox(label="Email") | |
password_login = gr.Textbox(label="Password", type="password") | |
login_btn = gr.Button("Login", variant="primary") | |
with gr.Accordion("New User? Click here to Sign Up", open=False) as signup_accordion: | |
name_signup = gr.Textbox(label="Name") | |
phone_signup = gr.Textbox(label="Phone (10 digits)") | |
email_signup = gr.Textbox(label="Email") | |
gender_signup = gr.Dropdown(label="Gender", choices=["Male", "Female", "Other"]) | |
password_signup = gr.Textbox(label="Create Password", type="password") | |
signup_btn = gr.Button("Sign Up") | |
with gr.Tab(DETECT_TAB_NAME, visible=False) as detect_tab: | |
with gr.Row(): | |
gr.Markdown("## Deepfake Detector") | |
logout_btn = gr.Button("Logout") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload Image", scale=1) | |
with gr.Column(scale=1): | |
result = gr.Textbox(label="Prediction Result", interactive=False) | |
predict_btn = gr.Button("Predict", variant="primary") | |
with gr.Tab(ABOUT_TAB_NAME): about.layout() | |
with gr.Tab(COMMUNITY_TAB_NAME): community.layout() | |
with gr.Tab(GUIDE_TAB_NAME): user_guide.layout() | |
def update_ui_on_auth_change(logged_in_status): | |
if logged_in_status: | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(selected=GUIDE_TAB_NAME), | |
gr.update(value="β Login successful!", visible=True) | |
) | |
else: | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(selected=LOGIN_TAB_NAME), | |
gr.update(value="", visible=False) | |
) | |
def handle_login(email, password): | |
if login_user(email, password): | |
return True, gr.update(value="β Login successful!", visible=True) | |
else: | |
return False, gr.update(value="β Invalid email or password.", visible=True) | |
def handle_logout(): | |
return False, "", "" | |
def handle_signup(name, phone, email, gender, password): | |
msg = register_user(name, phone, email, gender, password) | |
if msg.startswith("β "): | |
return gr.update(value=msg, visible=True), "", "", "", "", "", gr.update(open=False) | |
else: | |
return gr.update(value=msg, visible=True), name, phone, email, gender, password, gr.update(open=True) | |
login_btn.click(fn=handle_login, inputs=[email_login, password_login], outputs=[is_logged_in, message_output]) | |
logout_btn.click(fn=handle_logout, inputs=[], outputs=[is_logged_in, email_login, password_login]) | |
is_logged_in.change(fn=update_ui_on_auth_change, inputs=is_logged_in, outputs=[login_tab, detect_tab, tabs, message_output]) | |
signup_btn.click( | |
fn=handle_signup, | |
inputs=[name_signup, phone_signup, email_signup, gender_signup, password_signup], | |
outputs=[message_output, name_signup, phone_signup, email_signup, gender_signup, password_signup, signup_accordion] | |
) | |
predict_btn.click(fn=predict_image, inputs=image_input, outputs=result) | |
demo.load(fn=lambda: False, outputs=is_logged_in) | |
if __name__ == "__main__": | |
demo.launch() | |