deepfake_detector / dashboard.py
parass13's picture
Update dashboard.py
41712a7 verified
raw
history blame
4.38 kB
import gradio as gr
import sqlite3
import re
import bcrypt
import numpy as np
import cv2
from PIL import Image
import tensorflow as tf
import os
import warnings
# Custom page modules (ensure these files exist)
import home
import about
import examples
import community
import user_guide
import install
# Suppress all warnings and unnecessary logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
warnings.filterwarnings("ignore")
np.seterr(all='ignore')
# Load the deepfake model
deepfake_model = tf.keras.models.load_model("model_15_64.h5")
# Setup SQLite connection
db_path = os.path.abspath("users.db")
print(f"βœ… Using database at: {db_path}")
conn = sqlite3.connect(db_path, check_same_thread=False)
cursor = conn.cursor()
# Create user_details table if not exists
cursor.execute('''
CREATE TABLE IF NOT EXISTS user_details (
id INTEGER PRIMARY KEY AUTOINCREMENT,
NAME TEXT,
PHONE TEXT,
EMAIL TEXT UNIQUE,
GENDER TEXT,
PASSWORD BLOB
)
''')
conn.commit()
# Email validation
def is_valid_email(email):
return re.match(r"[^@]+@[^@]+\.[^@]+", email)
# Phone validation
def is_valid_phone(phone):
return re.match(r"^[0-9]{10}$", phone)
# Image preprocessing
def preprocess_image(image):
image = np.array(image)
image = cv2.resize(image, (128, 128))
image = image.astype(np.float32) / 255.0
return np.expand_dims(image, axis=0)
# Predict deepfake
def predict_image(image):
preprocessed = preprocess_image(image)
prediction = deepfake_model.predict(preprocessed)[0][0]
return "βœ… Real Image" if prediction >= 0.5 else "⚠️ Fake Image"
# Register new user
def register_user(name, phone, email, password):
if not is_valid_email(email):
return "❌ Invalid email", False
if not is_valid_phone(phone):
return "❌ Phone must be 10 digits", False
cursor.execute("SELECT * FROM user_details WHERE EMAIL = ?", (email,))
if cursor.fetchone():
return "⚠️ Email already registered", False
hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
cursor.execute("INSERT INTO user_details (NAME, PHONE, EMAIL, GENDER, PASSWORD) VALUES (?, ?, ?, ?, ?)",
(name, phone, email, "U", hashed_pw))
conn.commit()
print(f"βœ… Registered new user: {email}")
return "βœ… Registration successful! Please log in.", True
# Login existing user
def login_user(email, password):
cursor.execute("SELECT PASSWORD FROM user_details WHERE EMAIL = ?", (email,))
result = cursor.fetchone()
if result and bcrypt.checkpw(password.encode(), result[0] if isinstance(result[0], bytes) else result[0].encode()):
return "βœ… Login successful!", True
return "❌ Invalid credentials", False
# Gradio interface
with gr.Blocks() as demo:
session = gr.State({})
with gr.Tabs():
with gr.Tab("Home"):
home.layout()
with gr.Tab("Login"):
status = gr.Textbox(label="", interactive=False)
name = gr.Textbox(label="Name (Sign Up Only)")
phone = gr.Textbox(label="Phone (Sign Up Only)")
email = gr.Textbox(label="Email")
password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
signup_btn = gr.Button("Sign Up")
def handle_login(e, p):
msg, ok = login_user(e, p)
return msg
def handle_signup(n, ph, e, p):
msg, ok = register_user(n, ph, e, p)
return msg
login_btn.click(handle_login, [email, password], status)
signup_btn.click(handle_signup, [name, phone, email, password], status)
with gr.Tab("Detect Deepfake"):
gr.Markdown("### Upload an Image to Detect")
image_input = gr.Image(type="pil")
result = gr.Textbox(label="Result")
predict_btn = gr.Button("Predict")
predict_btn.click(predict_image, inputs=image_input, outputs=result)
with gr.Tab("Examples"):
examples.layout()
with gr.Tab("About"):
about.layout()
with gr.Tab("Community"):
community.layout()
with gr.Tab("User Guide"):
user_guide.layout()
with gr.Tab("Install"):
install.layout()
# Run the app
if __name__ == "__main__":
demo.launch()