parass13 commited on
Commit
5ba9330
·
verified ·
1 Parent(s): 577935d

Upload 14 files

Browse files
__pycache__/__init__.cpython-311.pyc ADDED
Binary file (570 Bytes). View file
 
__pycache__/about.cpython-311.pyc ADDED
Binary file (2.47 kB). View file
 
__pycache__/community.cpython-311.pyc ADDED
Binary file (2.56 kB). View file
 
__pycache__/examples.cpython-311.pyc ADDED
Binary file (2.31 kB). View file
 
__pycache__/home.cpython-311.pyc ADDED
Binary file (7.09 kB). View file
 
__pycache__/install.cpython-311.pyc ADDED
Binary file (1.13 kB). View file
 
__pycache__/user_guide.cpython-311.pyc ADDED
Binary file (1.33 kB). View file
 
pages/about.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import io
4
+
5
+
6
+ def show_about():
7
+ st.header(' ')
8
+ st.header(' ')
9
+ st.header(' ')
10
+ #st.header("API")
11
+ st.write("A deepfake is a type of synthetic media generated using deep learning techniques, particularly deep neural networks. The term ""deepfake"" is a combination of ""deep learning"" and ""fake.""")
12
+ st.write("In deepfake technology, algorithms are used to create or manipulate audio,\
13
+ video, or images to depict something that did not actually occur or that alters the appearance or actions of individuals.\
14
+ This can involve superimposing images or videos of people onto existing footage,\
15
+ making individuals appear to say or do things they never said or did.")
16
+ st.header("Deepfake Fraud Statistics")
17
+ #st.write("")
18
+ image = Image.open("C:\\Users\\Paras Sharma\\OneDrive\\Pictures\\Saved Pictures\\deepfake-growth.jpg")
19
+ new_image = image.resize((600, 400))
20
+ st.image(new_image)
21
+
22
+
23
+ st.header("Real Cases:")
24
+ st.markdown("**Kerala Man Loses Rs 40,000 to AI-Based Deepfake WhatsApp Fraud**")
25
+ st.write("According to India Today, a man in Kerala lost Rs 40,000 in an online scam on WhatsApp involving\
26
+ AI-based deepfake technology. The scammer impersonated the victim's former\
27
+ colleague via video call, fabricating a medical emergency and requesting\
28
+ money. This incident underscores the danger of sophisticated online fraud\
29
+ using deepfake technology and emphasizes the importance of verifying\
30
+ unexpected financial requests to avoid falling victim to such scams.")
31
+
32
+
33
+
34
+
35
+ '''st.header("The Dangers of Deepfakes")
36
+ st.write("Organizations and individuals are at risk regarding deepfakes as it’s a source that leverages social engineering attempts to manufacture fraudulent texts, voice messages, and fake videos to spread misinformation. \
37
+ According to the US Department of Defense, deepfakes are AI-generated, highly realistic content that can be used to: \
38
+ Threaten an organization’s brand. \
39
+ Impersonate leaders and financial officers. \
40
+ Enable access to networks, communications, and other sensitive information. \
41
+ In this sense, all companies that are housing business and customer data could be at risk to these attacks.")
42
+ '''
43
+
pages/community.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ def show_community():
5
+ st.header("Community")
6
+ st.write(
7
+ """
8
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut scelerisque
9
+ ultrices felis at ornare. In quis elementum diam. Phasellus facilisis laoreet
10
+ eros, sed blandit neque sollicitudin at. Vivamus aliquet vehicula nunc, eget
11
+ tempus tortor gravida quis. Ut rutrum orci velit, sit amet egestas sem
12
+ elementum id. Nam dignissim sem lectus, in tristique nisl dignissim et.
13
+ Vestibulum eleifend commodo purus non vestibulum. Pellentesque est lectus,
14
+ tempus blandit ipsum eleifend, pulvinar sodales lacus. Praesent finibus lectus
15
+ quis libero feugiat pharetra. Donec et eleifend magna.
16
+
17
+ Nam eu erat eget est viverra mollis eu eget dolor. Morbi ac tellus sit amet
18
+ nisl tempor tempus vitae consectetur elit. Aenean neque nisl, placerat eget
19
+ tempus vel, dictum in erat. Nullam tristique eros in feugiat auctor. Vivamus ac
20
+ mi non lacus euismod consectetur. Quisque vel tempus orci. Pellentesque
21
+ habitant morbi tristique senectus et netus et malesuada fames ac turpis
22
+ egestas. Cras lacinia purus ut tempor scelerisque. Etiam placerat erat nibh.
23
+ Cras lectus justo, convallis quis commodo in, aliquet non lectus. Vestibulum
24
+ ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Ut
25
+ sodales magna tellus, non interdum ex semper eget. Quisque porttitor augue nec
26
+ ante gravida finibus sed eget quam.
27
+
28
+ ### Proin at fermentum nisi
29
+ Aenean tortor justo, tincidunt non nibh in, iaculis viverra neque. Cras ut mi
30
+ eu tellus blandit interdum at vitae eros. Fusce vitae condimentum lacus, a
31
+ viverra arcu. Class aptent taciti sociosqu ad litora torquent per conubia
32
+ nostra, per inceptos himenaeos:
33
+ * Lorem ipsum dolor sit amet, consectetur adipiscing elit.
34
+ * Aenean fermentum nibh sit amet malesuada placerat.
35
+ * Cras sit amet diam ut risus cursus hendrerit.
36
+ * Duis tempor turpis malesuada ex porta, et viverra tellus fermentum.
37
+ """
38
+ )
pages/dashboard.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import sqlite3
3
+ import re
4
+ import bcrypt
5
+ import numpy as np
6
+ import cv2
7
+ from PIL import Image
8
+ import tensorflow as tf
9
+ import os
10
+ import warnings
11
+
12
+ # Suppress all warnings
13
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
14
+ warnings.filterwarnings("ignore")
15
+ np.seterr(all='ignore')
16
+
17
+ # Load model
18
+ deepfake_model = tf.keras.models.load_model("model_15_64.h5")
19
+
20
+
21
+ # Setup SQLite instead of MySQL
22
+ conn = sqlite3.connect("users.db", check_same_thread=False)
23
+ cursor = conn.cursor()
24
+
25
+ # Create user_details table in SQLite
26
+ cursor.execute('''
27
+ CREATE TABLE IF NOT EXISTS user_details (
28
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
29
+ NAME TEXT,
30
+ PHONE TEXT,
31
+ EMAIL TEXT UNIQUE,
32
+ GENDER TEXT,
33
+ PASSWORD TEXT
34
+ )
35
+ ''')
36
+ conn.commit()
37
+
38
+ # Validation utilities
39
+ def is_valid_email(email):
40
+ return re.match(r"[^@]+@[^@]+\.[^@]+", email)
41
+
42
+ def is_valid_phone(phone):
43
+ return re.match(r"^[0-9]{10}$", phone)
44
+
45
+ def preprocess_image(image):
46
+ image = np.array(image)
47
+ image = cv2.resize(image, (128, 128))
48
+ image = image.astype(np.float32) / 255.0
49
+ return np.expand_dims(image, axis=0)
50
+
51
+ def predict_image(image):
52
+ preprocessed = preprocess_image(image)
53
+ prediction = deepfake_model.predict(preprocessed)[0][0]
54
+ return "✅ Real Image" if prediction >= 0.5 else "⚠️ Fake Image"
55
+
56
+ # Register user
57
+ def register_user(name, phone, email, password):
58
+ if not is_valid_email(email):
59
+ return "❌ Invalid email", False
60
+ if not is_valid_phone(phone):
61
+ return "❌ Phone must be 10 digits", False
62
+
63
+ cursor.execute("SELECT * FROM user_details WHERE EMAIL = ?", (email,))
64
+ if cursor.fetchone():
65
+ return "⚠️ Email already registered", False
66
+
67
+ hashed_pw = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
68
+ cursor.execute("INSERT INTO user_details (NAME, PHONE, EMAIL, GENDER, PASSWORD) VALUES (?, ?, ?, ?, ?)",
69
+ (name, phone, email, "U", hashed_pw))
70
+ conn.commit()
71
+ return "✅ Registration successful! Please log in.", True
72
+
73
+ # Login user
74
+ def login_user(email, password):
75
+ cursor.execute("SELECT PASSWORD FROM user_details WHERE EMAIL = ?", (email,))
76
+ result = cursor.fetchone()
77
+ if result and bcrypt.checkpw(password.encode(), result[0].encode() if isinstance(result[0], str) else result[0]):
78
+ return "✅ Login successful!", True
79
+ return "❌ Invalid credentials", False
80
+
81
+ # App layout
82
+ with gr.Blocks() as demo:
83
+ session = gr.State({})
84
+ show_login = gr.State(True)
85
+
86
+ status = gr.Textbox(label="", interactive=False)
87
+
88
+ with gr.Column(visible=True) as login_panel:
89
+ gr.Markdown("### Login or Sign Up")
90
+ name = gr.Textbox(label="Name (Sign Up Only)")
91
+ phone = gr.Textbox(label="Phone (Sign Up Only)")
92
+ email = gr.Textbox(label="Email")
93
+ password = gr.Textbox(label="Password", type="password")
94
+
95
+ login_btn = gr.Button("Login")
96
+ signup_btn = gr.Button("Sign Up")
97
+
98
+ with gr.Column(visible=False) as prediction_panel:
99
+ gr.Markdown("## Upload Image for Deepfake Detection")
100
+ image_input = gr.Image(type="pil")
101
+ result = gr.Textbox(label="Result")
102
+ predict_btn = gr.Button("Predict")
103
+ logout_btn = gr.Button("Logout")
104
+
105
+ # Logic
106
+ def handle_login(e, p):
107
+ msg, ok = login_user(e, p)
108
+ return msg, gr.update(visible=not ok), gr.update(visible=ok)
109
+
110
+ def handle_signup(n, ph, e, p):
111
+ msg, ok = register_user(n, ph, e, p)
112
+ return msg
113
+
114
+ def handle_logout():
115
+ return {}, gr.update(visible=True), gr.update(visible=False)
116
+
117
+ login_btn.click(handle_login, [email, password], [status, login_panel, prediction_panel])
118
+ signup_btn.click(handle_signup, [name, phone, email, password], status)
119
+ predict_btn.click(predict_image, inputs=image_input, outputs=result)
120
+ logout_btn.click(handle_logout, outputs=[session, login_panel, prediction_panel])
121
+
122
+ # Launch
123
+ if __name__ == "__main__":
124
+ demo.launch()
pages/examples.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ def show_examples():
5
+ st.header("Examples")
6
+ col_1, col_2 = st.columns(2, gap="medium")
7
+ col_1.write(
8
+ """
9
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum vel augue
10
+ nec tellus pulvinar blandit at nec lacus. Fusce eu libero quis nisi vehicula
11
+ ornare. Integer cursus quam suscipit tempor iaculis. Mauris vitae accumsan
12
+ felis, at elementum urna. Aenean in urna ante. Etiam ac dignissim dolor.
13
+ Aliquam convallis pretium mauris, vel imperdiet quam fringilla vitae. Donec ac
14
+ nisi eget nulla cursus consectetur a vitae purus. Quisque vitae aliquet ipsum,
15
+ quis venenatis odio. Quisque mauris elit, elementum et eros et, varius
16
+ efficitur magna. Proin dictum tristique tellus, quis viverra lorem tempor
17
+ vitae. Nulla quis bibendum libero, quis malesuada nisi. Mauris vel aliquam
18
+ odio. Maecenas nec tortor consectetur, posuere elit vel, sodales ante. Sed ut
19
+ pretium massa, ut dictum nibh.
20
+ """
21
+ )
22
+ col_2.write(
23
+ """
24
+ Etiam dolor sem, bibendum id lacus eget, porta hendrerit mauris. Fusce varius
25
+ consequat erat, sit amet rhoncus lectus vestibulum vel. Cras vitae lacinia
26
+ nibh. Aenean varius facilisis tellus, vitae egestas magna pharetra ut. Maecenas
27
+ condimentum metus diam, facilisis rhoncus lorem lacinia eu. Maecenas eleifend
28
+ mauris velit, vitae placerat elit commodo ut. Ut ut purus elit. Suspendisse
29
+ condimentum quam sit amet vulputate vehicula. Nulla et quam at mauris cursus
30
+ euismod. Curabitur nec massa non tortor commodo condimentum eu at metus. Fusce
31
+ aliquet dolor nulla, quis feugiat sem bibendum vel. Donec tempus placerat leo
32
+ vitae blandit.
33
+ """
34
+ )
pages/home.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import mysql.connector
3
+ import re
4
+ import tensorflow as tf
5
+ from PIL import Image
6
+ import numpy as np
7
+ import cv2
8
+
9
+ # Initialize database connection
10
+ try:
11
+ mydb = mysql.connector.connect(
12
+ host="localhost",
13
+ user="root",
14
+ password="12345",
15
+ database="user_info"
16
+ )
17
+ mycursor = mydb.cursor()
18
+ print("Connection Established")
19
+ except mysql.connector.Error as err:
20
+ print(f"Error: {err}")
21
+ st.error("Database connection failed.")
22
+
23
+ # Load the deepfake detection model
24
+ deepfake_model_path = "C:\\Users\\Paras Sharma\\OneDrive\\Documents\\Deepfake\\model_15_64 (1).h5"
25
+ deepfake_model = tf.keras.models.load_model(deepfake_model_path)
26
+
27
+ def validate_name(name):
28
+ if re.match(r"^[a-zA-Z]+\s[a-zA-Z]+$", name):
29
+ return True
30
+ else:
31
+ st.warning("Please enter a valid name (e.g., Firstname Lastname).")
32
+ return False
33
+
34
+ def validate_phone(phone):
35
+ if re.match(r"^[0-9]{10}$", phone):
36
+ return True
37
+ else:
38
+ st.warning("Please enter a valid 10-digit phone number.")
39
+ return False
40
+
41
+ def validate_email(email):
42
+ email_pattern = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"
43
+ if re.match(email_pattern, email):
44
+ return True
45
+ else:
46
+ st.warning("Please enter a valid email.")
47
+ return False
48
+
49
+ def preprocess_image(image):
50
+ try:
51
+ image = np.array(image)
52
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
53
+ image = cv2.resize(image, (128, 128)) # Resize to match model input size
54
+ image = image.astype(np.float32) / 255.0 # Normalize pixel values
55
+ return np.expand_dims(image, axis=0) # Add batch dimension
56
+ except Exception as e:
57
+ print(f"Error preprocessing image: {e}")
58
+ return None
59
+
60
+ def predict_deepfake(image):
61
+ preprocessed_image = preprocess_image(image)
62
+ if preprocessed_image is not None:
63
+ prediction = deepfake_model.predict(preprocessed_image)
64
+ return prediction[0][0] # Assuming the model outputs a single value between 0 and 1
65
+ else:
66
+ return None
67
+
68
+ def show_home():
69
+ st.header(' ')
70
+ st.markdown("<h1 style='text-align: center; color: black;'>AuthentiTech: Leveraging Machine Learning to Combat Deepfake Detection</h1>", unsafe_allow_html=True)
71
+ st.header(' ', divider="rainbow")
72
+ st.header(' ')
73
+
74
+ st.markdown("<p style='font-size: medium;'>Enter Your Details</p>", unsafe_allow_html=True)
75
+
76
+ NAME = st.text_input('Name: ', st.session_state.get('name', ''))
77
+ if not validate_name(NAME):
78
+ return
79
+
80
+ PHONE = st.text_input('Contact Number(+91): ', max_chars=10)
81
+ PHONE = PHONE.strip() # Remove any leading/trailing spaces
82
+ if not validate_phone(PHONE):
83
+ return
84
+
85
+ GENDER = st.selectbox('Enter gender', ('F', 'M', 'other'))
86
+
87
+ EMAIL = st.text_input('Email: ', st.session_state.get('EMAIL', ''))
88
+ if not validate_email(EMAIL):
89
+ return
90
+
91
+ if st.button("Submit"):
92
+ try:
93
+ sql = "INSERT INTO user_details (NAME, PHONE, EMAIL, GENDER) VALUES (%s, %s, %s, %s)"
94
+ val = (NAME, PHONE, EMAIL, GENDER)
95
+ mycursor.execute(sql, val)
96
+ mydb.commit()
97
+ st.session_state['name'] = NAME
98
+ st.session_state['EMAIL'] = EMAIL
99
+ st.success("Details submitted successfully!")
100
+ except mysql.connector.Error as err:
101
+ st.error(f"Error: {err}")
102
+ print(f"Error executing SQL: {err}")
103
+
104
+ st.write("Upload your image (JPEG, JPG, PNG) here (max size: 15 KB):")
105
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], accept_multiple_files=False, key="file_uploader")
106
+
107
+ if uploaded_file is not None:
108
+ file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type, "FileSize": uploaded_file.size}
109
+ st.write(file_details)
110
+ image = Image.open(uploaded_file)
111
+ st.image(image, caption="Uploaded Image", use_column_width=True)
112
+
113
+ if st.button("Detect Now"):
114
+ prediction = predict_deepfake(image)
115
+ if prediction < 0.5:
116
+ st.write("Fake Image")
117
+ else:
118
+ st.write("Real Image")
119
+ else:
120
+ st.warning("Please upload an image.")
121
+
122
+ if __name__ == "__main__":
123
+ show_home()
pages/install.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ def show_install():
5
+ st.header("What are the dangers of Deepfakes?")
6
+ st.header(' ');
7
+ st.subheader("Misinformation and Fake News:")
8
+ st.write(
9
+ """
10
+ Deepfakes can be used to create highly convincing yet completely
11
+ fabricated content. This poses a significant threat in the realm of
12
+ information dissemination, as fake videos or audio clips can be
13
+ circulated to deceive people into believing events that never occurred
14
+ or statements that were never made. This can lead to the spread of
15
+ false narratives, misinformation, and confusion among the public.
16
+ """
17
+ )
pages/user_guide.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ def show_user_guide():
5
+ st.header(' ')
6
+ st.header(' ')
7
+ st.header("User guide")
8
+ st.header(' ')
9
+
10
+ container = st.container(border=True)
11
+ container.markdown(''':blue[**Step 1:**]''')
12
+ container.write("Create an account to get access")
13
+
14
+ container2 = st.container(border=True)
15
+ container2.markdown(''':blue[**Step 2:**]''')
16
+ container2.write("Upload your Images")
17
+
18
+ container3 = st.container(border=True)
19
+ container3.markdown(''':blue[**Step 3:**]''')
20
+ container3.write("Get the results")
21
+
22
+ #row1 = st.columns(1)
23
+ #row2 = st.columns(1)
24
+ #row3 = st.columns(1)
25
+
26
+
27
+ #for col in row1:
28
+ #with st.container():
29
+ #tile = col.container(height=120)
30
+ #st.title(":balloon:")
31
+
32
+ #st.subheader("Step 1: ")
33
+ #for col in row1:
34
+ #tile = col.container(height=120)
35
+ #st.markdown(":user: **Step 1:**")
36
+ #st.write("Create an account and subscribe to get access")
37
+
38
+ #tile.title(":balloon:")
39
+ #st.write("This is outside the container")
40
+
41
+ #Now insert some more in the container
42
+ #container.write("This is inside too")
43
+