Spaces:
Sleeping
Sleeping
Upload bloggenpart2.py
Browse files- bloggenpart2.py +284 -0
bloggenpart2.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Tuple, Any, Optional
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
import streamlit as st
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langgraph.graph import StateGraph, END
|
10 |
+
|
11 |
+
# Load environment variables (still useful as fallback)
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Configure page
|
15 |
+
st.set_page_config(page_title="AI Blog Generator", layout="wide")
|
16 |
+
|
17 |
+
# API Key handling in sidebar
|
18 |
+
with st.sidebar:
|
19 |
+
st.title("Configuration")
|
20 |
+
|
21 |
+
# LLM Provider Selection
|
22 |
+
provider = st.radio("LLM Provider", ["OpenAI", "Groq"])
|
23 |
+
|
24 |
+
if provider == "OpenAI":
|
25 |
+
openai_api_key = st.text_input("OpenAI API Key", type="password", help="Enter your OpenAI API key here")
|
26 |
+
model = st.selectbox("Model", ["gpt-3.5-turbo", "gpt-4", "gpt-4o"])
|
27 |
+
|
28 |
+
if openai_api_key:
|
29 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
30 |
+
else: # Groq
|
31 |
+
groq_api_key = st.text_input("Groq API Key", type="password", help="Enter your Groq API key here")
|
32 |
+
model = st.selectbox("Model", ["llama-3.3-70b-versatile","gemma2-9b-it","qwen-2.5-32b","mistral-saba-24b", "deepseek-r1-distill-qwen-32b"])
|
33 |
+
|
34 |
+
if groq_api_key:
|
35 |
+
os.environ["GROQ_API_KEY"] = groq_api_key
|
36 |
+
|
37 |
+
st.divider()
|
38 |
+
st.write("## About")
|
39 |
+
st.write("This app uses LangGraph to generate structured blog posts with a multi-step workflow.")
|
40 |
+
st.write("Made with ❤️ using LangGraph and Streamlit")
|
41 |
+
|
42 |
+
# Define the state schema
|
43 |
+
class BlogGeneratorState(BaseModel):
|
44 |
+
topic: str = Field(default="")
|
45 |
+
audience: str = Field(default="")
|
46 |
+
tone: str = Field(default="")
|
47 |
+
word_count: int = Field(default=500)
|
48 |
+
outline: List[str] = Field(default_factory=list)
|
49 |
+
sections: Dict[str, str] = Field(default_factory=dict)
|
50 |
+
final_blog: str = Field(default="")
|
51 |
+
error: Optional[str] = Field(default=None)
|
52 |
+
|
53 |
+
# Initialize LLM based on selected provider
|
54 |
+
def get_llm():
|
55 |
+
global provider, model
|
56 |
+
|
57 |
+
if provider == "OpenAI":
|
58 |
+
if not os.environ.get("OPENAI_API_KEY"):
|
59 |
+
st.error("Please enter your OpenAI API key in the sidebar")
|
60 |
+
st.stop()
|
61 |
+
return ChatOpenAI(model=model, temperature=0.7)
|
62 |
+
else: # Groq
|
63 |
+
if not os.environ.get("GROQ_API_KEY"):
|
64 |
+
st.error("Please enter your Groq API key in the sidebar")
|
65 |
+
st.stop()
|
66 |
+
return ChatGroq(model=model, temperature=0.7)
|
67 |
+
|
68 |
+
# Create prompt templates
|
69 |
+
outline_prompt = ChatPromptTemplate.from_template(
|
70 |
+
"""You are a professional blog writer. Create an outline for a blog post about {topic}.
|
71 |
+
The audience is {audience} and the tone should be {tone}.
|
72 |
+
The blog should be approximately {word_count} words.
|
73 |
+
|
74 |
+
Return ONLY the outline as a list of section headings (without numbers or bullets).
|
75 |
+
Each heading should be concise and engaging."""
|
76 |
+
)
|
77 |
+
|
78 |
+
section_prompt = ChatPromptTemplate.from_template(
|
79 |
+
"""Write content for the following section of a blog post about {topic}:
|
80 |
+
|
81 |
+
Section: {section}
|
82 |
+
|
83 |
+
The audience is {audience} and the tone should be {tone}.
|
84 |
+
Make this section approximately {section_word_count} words.
|
85 |
+
Make the content engaging, informative, and valuable to the reader.
|
86 |
+
|
87 |
+
Return ONLY the content for this section, without the heading."""
|
88 |
+
)
|
89 |
+
|
90 |
+
final_assembly_prompt = ChatPromptTemplate.from_template(
|
91 |
+
"""You have a blog post with the following sections:
|
92 |
+
|
93 |
+
{sections_content}
|
94 |
+
|
95 |
+
Format this into a complete, professional blog post in Markdown format with:
|
96 |
+
1. An engaging title at the top as an H1 heading
|
97 |
+
2. A brief introduction before the first section
|
98 |
+
3. Each section heading as an H2
|
99 |
+
4. A conclusion at the end
|
100 |
+
5. Proper spacing between sections
|
101 |
+
6. 2-3 relevant markdown formatting elements like bold, italic, blockquotes, or bullet points where appropriate
|
102 |
+
|
103 |
+
The blog should maintain the {tone} tone and be targeted at {audience}.
|
104 |
+
Make it flow naturally between sections."""
|
105 |
+
)
|
106 |
+
|
107 |
+
# Define the nodes for the graph
|
108 |
+
def get_outline(state: BlogGeneratorState) -> BlogGeneratorState:
|
109 |
+
"""Generate an outline for the blog post."""
|
110 |
+
try:
|
111 |
+
llm = get_llm()
|
112 |
+
chain = outline_prompt | llm
|
113 |
+
response = chain.invoke({
|
114 |
+
"topic": state.topic,
|
115 |
+
"audience": state.audience,
|
116 |
+
"tone": state.tone,
|
117 |
+
"word_count": state.word_count
|
118 |
+
})
|
119 |
+
|
120 |
+
# Parse the outline into a list
|
121 |
+
output_text = response.content
|
122 |
+
outline = [line.strip() for line in output_text.split('\n') if line.strip()]
|
123 |
+
return BlogGeneratorState(**{**state.model_dump(), "outline": outline})
|
124 |
+
except Exception as e:
|
125 |
+
st.error(f"Outline Error: {str(e)}")
|
126 |
+
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error generating outline: {str(e)}"})
|
127 |
+
|
128 |
+
def generate_sections(state: BlogGeneratorState) -> BlogGeneratorState:
|
129 |
+
"""Generate content for each section in the outline."""
|
130 |
+
if state.error:
|
131 |
+
return state
|
132 |
+
|
133 |
+
sections = {}
|
134 |
+
section_word_count = state.word_count // len(state.outline)
|
135 |
+
|
136 |
+
try:
|
137 |
+
llm = get_llm()
|
138 |
+
chain = section_prompt | llm
|
139 |
+
|
140 |
+
# Show progress
|
141 |
+
progress_bar = st.progress(0)
|
142 |
+
status_text = st.empty()
|
143 |
+
|
144 |
+
for i, section in enumerate(state.outline):
|
145 |
+
status_text.text(f"Generating section {i+1}/{len(state.outline)}: {section}")
|
146 |
+
|
147 |
+
response = chain.invoke({
|
148 |
+
"topic": state.topic,
|
149 |
+
"section": section,
|
150 |
+
"audience": state.audience,
|
151 |
+
"tone": state.tone,
|
152 |
+
"section_word_count": section_word_count
|
153 |
+
})
|
154 |
+
|
155 |
+
sections[section] = response.content
|
156 |
+
progress_bar.progress((i + 1) / len(state.outline))
|
157 |
+
|
158 |
+
status_text.empty()
|
159 |
+
progress_bar.empty()
|
160 |
+
|
161 |
+
return BlogGeneratorState(**{**state.model_dump(), "sections": sections})
|
162 |
+
except Exception as e:
|
163 |
+
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error generating sections: {str(e)}"})
|
164 |
+
|
165 |
+
def assemble_blog(state: BlogGeneratorState) -> BlogGeneratorState:
|
166 |
+
"""Assemble the final blog post in Markdown format."""
|
167 |
+
if state.error:
|
168 |
+
return state
|
169 |
+
|
170 |
+
try:
|
171 |
+
llm = get_llm()
|
172 |
+
chain = final_assembly_prompt | llm
|
173 |
+
|
174 |
+
sections_content = "\n\n".join([f"Section: {heading}\nContent: {content}"
|
175 |
+
for heading, content in state.sections.items()])
|
176 |
+
|
177 |
+
response = chain.invoke({
|
178 |
+
"sections_content": sections_content,
|
179 |
+
"tone": state.tone,
|
180 |
+
"audience": state.audience
|
181 |
+
})
|
182 |
+
|
183 |
+
final_blog = response.content
|
184 |
+
return BlogGeneratorState(**{**state.model_dump(), "final_blog": final_blog})
|
185 |
+
except Exception as e:
|
186 |
+
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error assembling blog: {str(e)}"})
|
187 |
+
|
188 |
+
# Define the workflow graph
|
189 |
+
def create_blog_generator_graph():
|
190 |
+
workflow = StateGraph(BlogGeneratorState)
|
191 |
+
|
192 |
+
# Add nodes
|
193 |
+
workflow.add_node("get_outline", get_outline)
|
194 |
+
workflow.add_node("generate_sections", generate_sections)
|
195 |
+
workflow.add_node("assemble_blog", assemble_blog)
|
196 |
+
|
197 |
+
# Add edges
|
198 |
+
workflow.add_edge("get_outline", "generate_sections")
|
199 |
+
workflow.add_edge("generate_sections", "assemble_blog")
|
200 |
+
workflow.add_edge("assemble_blog", END)
|
201 |
+
|
202 |
+
# Set the entry point
|
203 |
+
workflow.set_entry_point("get_outline")
|
204 |
+
|
205 |
+
return workflow.compile()
|
206 |
+
|
207 |
+
# Create the Streamlit app main content
|
208 |
+
st.title("AI Blog Generator")
|
209 |
+
st.write("Generate professional blog posts with a structured workflow")
|
210 |
+
|
211 |
+
with st.form("blog_generator_form"):
|
212 |
+
topic = st.text_input("Blog Topic", placeholder="E.g., Sustainable Living in Urban Environments")
|
213 |
+
|
214 |
+
col1, col2 = st.columns(2)
|
215 |
+
with col1:
|
216 |
+
audience = st.text_input("Target Audience", placeholder="E.g., Young professionals")
|
217 |
+
tone = st.selectbox("Tone", ["Informative", "Conversational", "Professional", "Inspirational", "Technical"])
|
218 |
+
|
219 |
+
with col2:
|
220 |
+
word_count = st.slider("Approximate Word Count", min_value=300, max_value=2000, value=800, step=100)
|
221 |
+
|
222 |
+
submit_button = st.form_submit_button("Generate Blog")
|
223 |
+
|
224 |
+
if submit_button:
|
225 |
+
if (provider == "OpenAI" and not os.environ.get("OPENAI_API_KEY")) or \
|
226 |
+
(provider == "Groq" and not os.environ.get("GROQ_API_KEY")):
|
227 |
+
st.error(f"Please enter your {provider} API key in the sidebar before generating a blog")
|
228 |
+
elif not topic or not audience:
|
229 |
+
st.error("Please fill out all required fields.")
|
230 |
+
else:
|
231 |
+
with st.spinner(f"Initializing blog generation using {provider} {model}..."):
|
232 |
+
try:
|
233 |
+
# Initialize the graph
|
234 |
+
blog_generator = create_blog_generator_graph()
|
235 |
+
|
236 |
+
# Set the initial state
|
237 |
+
initial_state = BlogGeneratorState(
|
238 |
+
topic=topic,
|
239 |
+
audience=audience,
|
240 |
+
tone=tone,
|
241 |
+
word_count=word_count
|
242 |
+
)
|
243 |
+
|
244 |
+
# Run the graph
|
245 |
+
result = blog_generator.invoke(initial_state)
|
246 |
+
|
247 |
+
# Check if result is a dict and has expected keys
|
248 |
+
if isinstance(result, dict):
|
249 |
+
final_blog = result.get("final_blog", "")
|
250 |
+
outline = result.get("outline", [])
|
251 |
+
error = result.get("error")
|
252 |
+
|
253 |
+
if error:
|
254 |
+
st.error(f"Error: {error}")
|
255 |
+
elif final_blog:
|
256 |
+
# Display the blog post
|
257 |
+
st.success("Blog post generated successfully!")
|
258 |
+
|
259 |
+
st.subheader("Generated Blog Post")
|
260 |
+
st.markdown(final_blog)
|
261 |
+
|
262 |
+
# Download button for the blog post
|
263 |
+
st.download_button(
|
264 |
+
label="Download Blog as Markdown",
|
265 |
+
data=final_blog,
|
266 |
+
file_name=f"{topic.replace(' ', '_').lower()}_blog.md",
|
267 |
+
mime="text/markdown",
|
268 |
+
)
|
269 |
+
|
270 |
+
# Show metadata about the generation
|
271 |
+
st.info(f"Generated using {provider} {model}")
|
272 |
+
|
273 |
+
# Optionally show the outline
|
274 |
+
with st.expander("View Blog Outline"):
|
275 |
+
for i, section in enumerate(outline, 1):
|
276 |
+
st.write(f"{i}. {section}")
|
277 |
+
else:
|
278 |
+
st.error("Blog generation completed but no content was produced")
|
279 |
+
else:
|
280 |
+
st.error(f"Unexpected result type: {type(result)}")
|
281 |
+
|
282 |
+
except Exception as e:
|
283 |
+
st.error(f"An error occurred: {str(e)}")
|
284 |
+
st.info("Please check your API key and try again.")
|