Spaces:
Sleeping
Sleeping
File size: 25,950 Bytes
a28c751 652d812 a28c751 652d812 a28c751 9847980 652d812 9847980 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 a28c751 652d812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# ์์ ์ ์ธ AI ์นดํผ๋ผ์ดํฐ - ์๋ฒ ๋ฉ ๊ธฐ๋ฐ RAG ์์คํ
# Hugging Face Spaces ํ๊ฒฝ ์ต์ ํ ๋ฒ์
import streamlit as st
import pandas as pd
import numpy # ์ ์ญ์ ์ผ๋ก numpy๋ฅผ ๋จผ์ ์ํฌํธํด๋ด
๋๋ค.
import pickle
import google.generativeai as genai
import time
import json
import os
import sys # ๋๋ฒ๊น
์ฉ sys ๋ชจ๋ ์ํฌํธ
from datetime import datetime
# ํ๊ฒฝ ์ค์ (๊ถํ ๋ฌธ์ ํด๊ฒฐ)
os.environ['STREAMLIT_BROWSER_GATHER_USAGE_STATS'] = 'false'
# ์บ์ ๊ฒฝ๋ก๋ฅผ /tmp ๋ก ์ค์ (Hugging Face Spaces์์ ๊ถ์ฅ๋๋ ์ฐ๊ธฐ ๊ฐ๋ฅ ๊ฒฝ๋ก)
TMP_DIR = "/tmp"
TRANSFORMERS_CACHE_DIR = os.path.join(TMP_DIR, '.cache', 'transformers')
SENTENCE_TRANSFORMERS_HOME_DIR = os.path.join(TMP_DIR, '.cache', 'sentence_transformers')
os.environ['TRANSFORMERS_CACHE'] = TRANSFORMERS_CACHE_DIR
os.environ['SENTENCE_TRANSFORMERS_HOME'] = SENTENCE_TRANSFORMERS_HOME_DIR
# ์บ์ ๋๋ ํ ๋ฆฌ ์์ฑ (์กด์ฌํ์ง ์์ผ๋ฉด) - /tmp ์๋๋ ์ผ๋ฐ์ ์ผ๋ก ์์ฑ ๊ฐ๋ฅ
try:
os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
os.makedirs(SENTENCE_TRANSFORMERS_HOME_DIR, exist_ok=True)
except PermissionError:
st.warning(f"โ ๏ธ ์บ์ ๋๋ ํ ๋ฆฌ ์์ฑ ๊ถํ ์์: {TRANSFORMERS_CACHE_DIR} ๋๋ {SENTENCE_TRANSFORMERS_HOME_DIR}. ๋ชจ๋ธ ๋ค์ด๋ก๋๊ฐ ๋๋ฆด ์ ์์ต๋๋ค.")
except Exception as e_mkdir:
st.warning(f"โ ๏ธ ์บ์ ๋๋ ํ ๋ฆฌ ์์ฑ ์ค ์ค๋ฅ: {e_mkdir}")
# ํ์ด์ง ์ค์
st.set_page_config(
page_title="AI ์นดํผ๋ผ์ดํฐ | RAG ๊ธฐ๋ฐ ๊ด๊ณ ์นดํผ ์์ฑ",
page_icon="โจ",
layout="wide",
initial_sidebar_state="expanded"
)
# ์ ๋ชฉ ๋ฐ ์ค๋ช
st.title("โจ AI ์นดํผ๋ผ์ดํฐ")
st.markdown("### ๐ฏ 37,671๊ฐ ์ค์ ๊ด๊ณ ์นดํผ ๋ฐ์ดํฐ ๊ธฐ๋ฐ RAG ์์คํ
")
st.markdown("---")
# --- ๋ฐํ์ ํ๊ฒฝ ๋๋ฒ๊น
(์ ํ๋ฆฌ์ผ์ด์
์ต์๋จ ๋๋ load_system ๋ฐ๋ก ์ ) ---
st.sidebar.markdown("---")
st.sidebar.markdown("### โ๏ธ ๋ฐํ์ ํ๊ฒฝ ์ ๋ณด (๋๋ฒ๊น
์ฉ)")
st.sidebar.text(f"Py Exec: {sys.executable}")
st.sidebar.text(f"Py Ver: {sys.version.split()[0]}") # ๊ฐ๋ตํ๊ฒ ๋ฒ์ ๋ง
# st.sidebar.text(f"sys.path: {sys.path}") # ๋๋ฌด ๊ธธ์ด์ ์ผ๋จ ์ฃผ์
st.sidebar.text(f"PYTHONPATH: {os.environ.get('PYTHONPATH', 'Not Set')}")
try:
# numpy๋ฅผ ์ฌ๊ธฐ์ ๋ค์ ์ํฌํธํ๊ณ ์ฌ์ฉ
import numpy as np_runtime_check
st.sidebar.text(f"NumPy Ver (Runtime): {np_runtime_check.__version__}")
# ํต์ฌ ๋ชจ๋ ์ํฌํธ ์๋
import numpy.core._multiarray_umath
st.sidebar.markdown("โ
NumPy core modules imported (Runtime)")
except Exception as e:
st.sidebar.error(f"โ NumPy import error (Runtime): {e}")
st.sidebar.markdown("---")
# --- ๋๋ฒ๊น
์ฝ๋ ๋ ---
# ์ฌ์ด๋๋ฐ ์ค์
st.sidebar.header("๐๏ธ ์นดํผ ์์ฑ ์ค์ ")
# API ํค ์
๋ ฅ (ํ๊ฒฝ๋ณ์ ์ฐ์ ์ฌ์ฉ)
default_api_key = os.getenv("GEMINI_API_KEY", "")
api_key = st.sidebar.text_input(
"๐ Gemini API ํค",
value=default_api_key,
type="password",
help="ํ๊ฒฝ๋ณ์์ GEMINI_API_KEY๋ก ์ค์ ํ๋ฉด ์๋ ์
๋ ฅ๋ฉ๋๋ค"
)
if not api_key:
st.warning("โ ๏ธ Gemini API ํค๋ฅผ ์
๋ ฅํด์ฃผ์ธ์")
st.info("๐ก Settings โ Repository secrets์์ GEMINI_API_KEY๋ฅผ ์ค์ ํ์ธ์")
st.stop()
# ์์คํ
์ด๊ธฐํ (์บ์ฑ) - ์๋ฒ ๋ฉ ํ์!
@st.cache_resource(show_spinner=False)
def load_system():
"""์์คํ
์ปดํฌ๋ํธ ๋ก๋ฉ - ์๋ฒ ๋ฉ ๊ธฐ๋ฐ RAG ์์คํ
"""
# --- ํจ์ ์์ ์ ๋๋ฒ๊น
์ ๋ณด ์ถ๊ฐ ---
st.write("--- load_system() ์์ ---")
st.write(f"Python Executable (load_system): {sys.executable}")
st.write(f"Python Version (load_system): {sys.version}")
# st.write(f"sys.path (load_system): {sys.path}") # ๋๋ฌด ๊ธธ์ด์ ์ฃผ์
st.write(f"PYTHONPATH (load_system): {os.environ.get('PYTHONPATH')}")
try:
import numpy as np_load_system_check # ์ ๋ณ์นญ ์ฌ์ฉ
st.write(f"NumPy version (load_system start): {np_load_system_check.__version__}")
import numpy.core._multiarray_umath
st.write("load_system start: Successfully imported numpy.core._multiarray_umath")
except Exception as e:
st.write(f"load_system start: Error importing NumPy parts: {e}")
# --- ๋๋ฒ๊น
์ ๋ณด ๋ ---
progress_container = st.container()
with progress_container:
# ์ ์ฒด ์งํ๋ฅ
total_progress = st.progress(0)
status_text = st.empty()
# 1๋จ๊ณ: API ์ค์ (10%)
status_text.text("๐ Gemini API ์ด๊ธฐํ ์ค...")
try:
genai.configure(api_key=api_key)
model_llm = genai.GenerativeModel('gemini-1.5-flash') # ๋ชจ๋ธ ์ด๋ฆ ํ์ธ (์ด์ ์ gemini-2.0-flash)
total_progress.progress(10)
st.success("โ
Gemini API ์ค์ ์๋ฃ")
except Exception as e:
st.error(f"โ Gemini API ์ค์ ์คํจ: {e}")
return None, None, None, None
# 2๋จ๊ณ: ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ (40%)
status_text.text("๐ค ํ๊ตญ์ด ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ฉ ์ค... (1-2๋ถ ์์)")
embedding_model_instance = None # ๋ณ์๋ช
๋ณ๊ฒฝ
try:
# sentence-transformers ์ํฌํธ๋ฅผ ํจ์ ๋ด์์ ์ ์ง
from sentence_transformers import SentenceTransformer
# from sklearn.metrics.pairwise import cosine_similarity # ์ฌ๊ธฐ์๋ ์์ง ํ์ ์์
embedding_model_instance = SentenceTransformer('jhgan/ko-sbert-nli',
cache_folder=SENTENCE_TRANSFORMERS_HOME_DIR) # ์์ ๋ ์บ์ ๊ฒฝ๋ก ์ฌ์ฉ
total_progress.progress(40)
st.success("โ
ํ๊ตญ์ด ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ")
except Exception as e:
st.error(f"โ ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ฉ ์คํจ: {e}")
st.error("๐จ ์๋ฒ ๋ฉ ๋ชจ๋ธ ์์ด๋ RAG ์์คํ
์ด ์๋ํ ์ ์์ต๋๋ค!")
return None, None, None, None
# 3๋จ๊ณ: ๋ฐ์ดํฐ ๋ก๋ (60%)
status_text.text("๐ ์นดํผ ๋ฐ์ดํฐ๋ฒ ์ด์ค ๋ก๋ฉ ์ค...")
df_data = None # ๋ณ์๋ช
๋ณ๊ฒฝ
try:
df_data = pd.read_excel('๊ด๊ณ ์นดํผ๋ฐ์ดํฐ_๋ธ๋๋์ถ์ถ์๋ฃ.xlsx')
total_progress.progress(60)
st.success(f"โ
๋ฐ์ดํฐ ๋ก๋ฉ ์๋ฃ: {len(df_data):,}๊ฐ ์นดํผ")
except Exception as e:
st.error(f"โ ๋ฐ์ดํฐ ๋ก๋ฉ ์คํจ: {e}")
return None, None, None, None
# 4๋จ๊ณ: ์๋ฒ ๋ฉ ๋ฐ์ดํฐ ๋ก๋ (90%) - ์ด๊ฒ ํต์ฌ!
status_text.text("๐ ๋ฒกํฐ ์๋ฒ ๋ฉ ๋ก๋ฉ ์ค... (RAG ์์คํ
ํต์ฌ)")
embeddings_array = None # ๋ณ์๋ช
๋ณ๊ฒฝ
try:
# --- pickle.load() ์ง์ NumPy ๋๋ฒ๊น
---
import numpy as np_pickle_check # ์ ๋ณ์นญ ์ฌ์ฉ
st.write(f"[DEBUG] NumPy version just before pickle.load: {np_pickle_check.__version__}")
import numpy.core._multiarray_umath
st.write("[DEBUG] Successfully imported numpy.core._multiarray_umath before pickle.load")
# --- ๋๋ฒ๊น
๋ ---
with open('copy_embeddings.pkl', 'rb') as f:
embeddings_data = pickle.load(f)
embeddings_array = embeddings_data['embeddings']
total_progress.progress(90)
st.success(f"โ
์๋ฒ ๋ฉ ๋ก๋ฉ ์๋ฃ: {embeddings_array.shape[0]:,}๊ฐ ร {embeddings_array.shape[1]}์ฐจ์")
except ModuleNotFoundError as mnfe: # ModuleNotFoundError๋ฅผ ํน์ ํด์ ์ก๊ธฐ
st.error(f"โ ์๋ฒ ๋ฉ ๋ก๋ฉ ์คํจ (ModuleNotFoundError): {mnfe}")
st.error(f"๐จ ํด๋น ๋ชจ๋์ ์ฐพ์ ์ ์์ต๋๋ค. sys.path: {sys.path}")
st.error("๐จ ์๋ฒ ๋ฉ ์์ด๋ ์๋ฏธ์ ๊ฒ์์ด ๋ถ๊ฐ๋ฅํฉ๋๋ค!")
# ์ถ๊ฐ ๋๋ฒ๊น
: ํ์ฌ ๋ก๋๋ numpy ๊ฐ์ฒด ์ํ
try:
import numpy as np_final_check
st.error(f"[DEBUG] NumPy object at failure: {np_final_check}")
st.error(f"[DEBUG] NumPy __file__ at failure: {np_final_check.__file__}")
except Exception as e_np_final:
st.error(f"[DEBUG] Could not even import numpy at failure: {e_np_final}")
return None, None, None, None
except Exception as e:
st.error(f"โ ์๋ฒ ๋ฉ ๋ก๋ฉ ์คํจ (์ผ๋ฐ ์ค๋ฅ): {e}")
st.error("๐จ ์๋ฒ ๋ฉ ์์ด๋ ์๋ฏธ์ ๊ฒ์์ด ๋ถ๊ฐ๋ฅํฉ๋๋ค!")
return None, None, None, None
# 5๋จ๊ณ: ์ต์ข
๊ฒ์ฆ (100%)
status_text.text("โจ ์์คํ
๊ฒ์ฆ ์ค...")
if model_llm and embedding_model_instance and df_data is not None and embeddings_array is not None:
total_progress.progress(100)
status_text.text("๐ RAG ์์คํ
๋ก๋ฉ ์๋ฃ!")
success_col1, success_col2, success_col3 = st.columns(3)
with success_col1:
st.metric("์นดํผ ๋ฐ์ดํฐ", f"{len(df_data):,}๊ฐ")
with success_col2:
st.metric("์๋ฒ ๋ฉ ์ฐจ์", f"{embeddings_array.shape[1]}D")
with success_col3:
st.metric("๊ฒ์ ์์ง", "Korean SBERT")
time.sleep(1)
total_progress.empty()
status_text.empty()
# ์ ์ญ ๋ณ์๋ช
๊ณผ์ ์ถฉ๋์ ํผํ๊ธฐ ์ํด ํจ์ ๋ด์์ ์ฌ์ฉํ ๋ณ์๋ช
์ผ๋ก ๋ฐํ
return model_llm, embedding_model_instance, df_data, embeddings_array
else:
st.error("โ ์์คํ
๋ก๋ฉ ์คํจ: ํ์ ๊ตฌ์ฑ์์ ๋๋ฝ")
return None, None, None, None
# ์์คํ
๋ก๋ฉ (๋ณ์๋ช
์ถฉ๋ ๋ฐฉ์ง๋ฅผ ์ํด ์๋ก์ด ์ด๋ฆ ์ฌ์ฉ)
loaded_model, loaded_embedding_model, loaded_df, loaded_embeddings = None, None, None, None
with st.spinner("๐ AI ์นดํผ๋ผ์ดํฐ ์์คํ
์ด๊ธฐํ ์ค..."):
loaded_model, loaded_embedding_model, loaded_df, loaded_embeddings = load_system()
if loaded_model is None or loaded_embedding_model is None or loaded_df is None or loaded_embeddings is None:
st.error("โ ์์คํ
์ ๋ก๋ฉํ ์ ์์ต๋๋ค. ํ์ด์ง๋ฅผ ์๋ก๊ณ ์นจํ๊ฑฐ๋ ๊ด๋ฆฌ์์๊ฒ ๋ฌธ์ํ์ธ์.")
st.stop()
# ์ฌ์ด๋๋ฐ ์ค์ (์์คํ
๋ก๋ฉ ์ฑ๊ณต ํ)
st.sidebar.success("๐ RAG ์์คํ
์ค๋น ์๋ฃ!")
# ์นดํ
๊ณ ๋ฆฌ ์ ํ
categories = ['์ ์ฒด'] + sorted(loaded_df['์นดํ
๊ณ ๋ฆฌ'].unique().tolist())
selected_category = st.sidebar.selectbox(
"๐ ์นดํ
๊ณ ๋ฆฌ",
categories,
help="ํน์ ์นดํ
๊ณ ๋ฆฌ๋ก ๊ฒ์์ ์ ํํ ์ ์์ต๋๋ค"
)
# ํ๊ฒ ๊ณ ๊ฐ ์ค์
target_audience = st.sidebar.selectbox(
"๐ฏ ํ๊ฒ ๊ณ ๊ฐ",
['20๋', '30๋', '์ผ๋ฐ', '10๋', '40๋', '50๋+', '๋จ์ฑ', '์ฌ์ฑ', '์ง์ฅ์ธ', 'ํ์', '์ฃผ๋ถ'],
help="ํ๊ฒ ๊ณ ๊ฐ์ ๋ง๋ ํค์ค๋งค๋๋ก ์นดํผ๋ฅผ ์์ฑํฉ๋๋ค"
)
# ๋ธ๋๋ ํค์ค๋งค๋
brand_tone = st.sidebar.selectbox(
"๐จ ๋ธ๋๋ ํค",
['์ธ๋ จ๋', '์น๊ทผํ', '๊ณ ๊ธ์ค๋ฌ์ด', 'ํ๊ธฐ์ฐฌ', '์ ๋ขฐํ ์ ์๋', '์ ์', '๋ฐ๋ปํ', '์ ๋ฌธ์ ์ธ'],
help="์ํ๋ ๋ธ๋๋ ์ด๋ฏธ์ง๋ฅผ ์ ํํ์ธ์"
)
# ์ฐฝ์์ฑ ์์ค
creative_level = st.sidebar.select_slider(
"๐ง ์ฐฝ์์ฑ ์์ค",
options=['๋ณด์์ ', '๊ท ํ', '์ฐฝ์์ '],
value='๊ท ํ',
help="๋ณด์์ : ์์ ํ ํํ, ์ฐฝ์์ : ๋
์ฐฝ์ ํํ"
)
# ๋ฉ์ธ ์
๋ ฅ ์์ญ
st.markdown("## ๐ญ ์ด๋ค ์นดํผ๋ฅผ ๋ง๋ค๊ณ ์ถ์ผ์ ๊ฐ์?")
user_request = "" # ์ด๊ธฐํ
input_method = st.radio(
"์
๋ ฅ ๋ฐฉ์ ์ ํ:",
["์ง์ ์
๋ ฅ", "ํ
ํ๋ฆฟ ์ ํ"],
horizontal=True,
key="input_method_radio" # ๊ณ ์ ํค ์ถ๊ฐ
)
if input_method == "์ง์ ์
๋ ฅ":
user_request = st.text_area(
"์นดํผ ์์ฒญ์ ์์ธํ ์์ฑํด์ฃผ์ธ์:",
placeholder="์: 30๋ ์ง์ฅ ์ฌ์ฑ์ฉ ํ๋ฆฌ๋ฏธ์ ์คํจ์ผ์ด ์ ์ ํ ๋ฐ์นญ ์นดํผ",
height=100,
key="user_request_direct" # ๊ณ ์ ํค ์ถ๊ฐ
)
else:
templates = {
"์ ์ ํ ๋ฐ์นญ": "๋์ {์นดํ
๊ณ ๋ฆฌ} ์ ์ ํ ๋ฐ์นญ ์นดํผ",
"ํ ์ธ ์ด๋ฒคํธ": "{์นดํ
๊ณ ๋ฆฌ} ํ ์ธ ์ด๋ฒคํธ ํ๋ก๋ชจ์
์นดํผ",
"๋ธ๋๋ ์ฌ๋ก๊ฑด": "{์นดํ
๊ณ ๋ฆฌ} ๋ธ๋๋์ ๋ํ ์ฌ๋ก๊ฑด",
"์ฑ/์๋น์ค ๋ฆฌ๋ด์ผ": "{์๋น์ค๋ช
} ์ ๋ฒ์ ์ถ์ ์นดํผ",
"์์ฆ ํ์ ": "{์์ฆ} ํ์ {์นดํ
๊ณ ๋ฆฌ} ํน๋ณ ์๋์
์นดํผ"
}
selected_template = st.selectbox("ํ
ํ๋ฆฟ ์ ํ:", list(templates.keys()), key="template_selectbox")
template_category = ""
service_name = ""
season = ""
col1, col2 = st.columns(2)
with col1:
template_category = st.text_input("์ ํ/์๋น์ค:", value="", key="template_category_input")
with col2:
if selected_template == "์ฑ/์๋น์ค ๋ฆฌ๋ด์ผ":
service_name = st.text_input("์๋น์ค๋ช
:", placeholder="์: ๋ฐฐ๋ฌ์ฑ, ๊ธ์ต์ฑ", key="template_service_name_input")
user_request = templates[selected_template].format(์๋น์ค๋ช
=service_name)
elif selected_template == "์์ฆ ํ์ ":
season = st.selectbox("์์ฆ:", ["๋ด", "์ฌ๋ฆ", "๊ฐ์", "๊ฒจ์ธ", "ํฌ๋ฆฌ์ค๋ง์ค", "์ ๋
"], key="template_season_selectbox")
user_request = templates[selected_template].format(์์ฆ=season, ์นดํ
๊ณ ๋ฆฌ=template_category)
else:
user_request = templates[selected_template].format(์นดํ
๊ณ ๋ฆฌ=template_category)
st.text_area("์์ฑ๋ ์์ฒญ:", value=user_request, height=80, disabled=True, key="generated_request_template")
# ๊ณ ๊ธ ์ต์
with st.expander("๐ง ๊ณ ๊ธ ์ต์
"):
col1_adv, col2_adv = st.columns(2) # ๋ณ์๋ช
๋ณ๊ฒฝ
with col1_adv:
num_concepts = st.slider("์์ฑํ ์ปจ์
์:", 1, 5, 3, key="num_concepts_slider")
min_similarity = st.slider("์ต์ ์ ์ฌ๋:", 0.0, 1.0, 0.3, 0.1, key="min_similarity_slider")
with col2_adv:
show_references = st.checkbox("์ฐธ๊ณ ์นดํผ ๋ณด๊ธฐ", value=True, key="show_references_checkbox")
num_references = st.slider("์ฐธ๊ณ ์นดํผ ์:", 3, 10, 5, key="num_references_slider")
# RAG ์นดํผ ์์ฑ ํจ์ (์๋ฒ ๋ฉ ๊ธฐ๋ฐ ํ์!)
def generate_copy_with_rag(user_req, category_filter, target_aud, brand_tn, creative_lvl, num_con): # ๋ณ์๋ช
๋ณ๊ฒฝ
"""RAG ๊ธฐ๋ฐ ์นดํผ ์์ฑ - ์๋ฒ ๋ฉ ํ์ ์ฌ์ฉ"""
if not user_req.strip():
st.error("โ ์นดํผ ์์ฒญ์ ์
๋ ฅํด์ฃผ์ธ์")
return None
progress_bar = st.progress(0)
status_text_gen = st.empty() # ๋ณ์๋ช
๋ณ๊ฒฝ
status_text_gen.text("๐ ์๋ฏธ์ ๊ฒ์ ์ค... (RAG ํต์ฌ ๊ธฐ๋ฅ)")
progress_bar.progress(20)
try:
search_query = f"{user_req} {target_aud} ๊ด๊ณ ์นดํผ"
from sklearn.metrics.pairwise import cosine_similarity # generate_copy_with_rag ๋ด์์ ์ํฌํธ
query_embedding = loaded_embedding_model.encode([search_query]) # ๋ก๋๋ ๋ชจ๋ธ ์ฌ์ฉ
if category_filter != '์ ์ฒด':
filtered_df_gen = loaded_df[loaded_df['์นดํ
๊ณ ๋ฆฌ'] == category_filter].copy() # .copy() ์ถ๊ฐ
else:
filtered_df_gen = loaded_df.copy() # .copy() ์ถ๊ฐ
progress_bar.progress(40)
if filtered_df_gen.empty:
st.warning(f"โ ๏ธ ์ ํํ์ ์นดํ
๊ณ ๋ฆฌ '{category_filter}'์ ํด๋นํ๋ ๋ฐ์ดํฐ๊ฐ ์์ต๋๋ค.")
progress_bar.empty()
status_text_gen.empty()
return None
filtered_indices = filtered_df_gen.index.tolist()
# loaded_embeddings์์ ์ง์ ์ธ๋ฑ์ฑํ๊ธฐ ์ ์, filtered_indices๊ฐ loaded_embeddings์ ๋ฒ์ ๋ด์ ์๋์ง ํ์ธ
valid_indices_for_embedding = [idx for idx in filtered_indices if idx < len(loaded_embeddings)]
if not valid_indices_for_embedding:
st.warning(f"โ ๏ธ ์ ํจํ ์ธ๋ฑ์ค๋ฅผ ์ฐพ์ ์ ์์ด ์ ์ฌ๋ ๊ฒ์์ ์งํํ ์ ์์ต๋๋ค. (์นดํ
๊ณ ๋ฆฌ: {category_filter})")
progress_bar.empty()
status_text_gen.empty()
return None
# ์ ํจํ ์ธ๋ฑ์ค์ ํด๋นํ๋ ์๋ฒ ๋ฉ๋ง ์ฌ์ฉ
# ์ด ๋ถ๋ถ์ ์๋ณธ ๋ฐ์ดํฐํ๋ ์(loaded_df)์ ์ธ๋ฑ์ค๋ฅผ ์ฌ์ฉํด์ผ ํจ
# filtered_df_gen์ ์ธ๋ฑ์ค๋ loaded_df์ ๋ถ๋ถ์งํฉ์ด๋ฏ๋ก,
# loaded_embeddings์์ ์ด ์ธ๋ฑ์ค๋ค์ ์ง์ ์ฌ์ฉํด์ผ ํฉ๋๋ค.
# ์ฃผ์: filtered_indices๋ loaded_df์ ์ค์ ์ธ๋ฑ์ค ๊ฐ์ด์ด์ผ ํจ.
# ๋ง์ฝ filtered_df_gen.index๊ฐ 0๋ถํฐ ์์ํ๋ ์๋ก์ด ์ธ๋ฑ์ค๋ผ๋ฉด, ๋งคํ ํ์.
# ํ์ฌ ์ฝ๋๋ filtered_df.index.tolist()๊ฐ ์๋ณธ ์ธ๋ฑ์ค๋ฅผ ์ ์งํ๋ค๊ณ ๊ฐ์ .
filtered_embeddings_for_search = loaded_embeddings[valid_indices_for_embedding]
# ์ ์ฌ๋ ๊ณ์ฐ ์ query_embedding๊ณผ filtered_embeddings_for_search์ ์ฐจ์ ํ์ธ
if query_embedding.shape[1] != filtered_embeddings_for_search.shape[1]:
st.error(f"โ ์๋ฒ ๋ฉ ์ฐจ์ ๋ถ์ผ์น: ์ฟผ๋ฆฌ({query_embedding.shape[1]}D), ๋ฌธ์({filtered_embeddings_for_search.shape[1]}D)")
return None
similarities = cosine_similarity(query_embedding, filtered_embeddings_for_search)[0]
# ์์ N๊ฐ (num_references) ์ ํ
# similarities์ ๊ธธ์ด๋ valid_indices_for_embedding์ ๊ธธ์ด์ ๊ฐ์
# top_indices๋ similarities ๋ฐฐ์ด ๋ด์ ์ธ๋ฑ์ค
num_to_select = min(num_references, len(similarities))
top_similarity_indices = np.argsort(similarities)[::-1][:num_to_select]
reference_copies = []
for i in top_similarity_indices:
# i๋ similarities ๋ฐฐ์ด์์์ ์ธ๋ฑ์ค.
# ์ด ์ธ๋ฑ์ค๋ฅผ ์ฌ์ฉํ์ฌ valid_indices_for_embedding์์ ์๋ณธ ๋ฐ์ดํฐํ๋ ์์ ์ธ๋ฑ์ค๋ฅผ ๊ฐ์ ธ์์ผ ํจ.
original_df_idx = valid_indices_for_embedding[i]
row = loaded_df.iloc[original_df_idx] # ์๋ณธ df์์ ๊ฐ์ ธ์ด
if similarities[i] >= min_similarity:
reference_copies.append({
'copy': row['์นดํผ ๋ด์ฉ'],
'brand': row['๋ธ๋๋'],
'similarity': float(similarities[i]) # float์ผ๋ก ๋ณํ (JSON ์ง๋ ฌํ ๋๋น)
})
progress_bar.progress(60)
if not reference_copies:
st.warning(f"โ ๏ธ ์ ์ฌ๋ {min_similarity} ์ด์์ธ ์ฐธ๊ณ ์นดํผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. ์ ์ฌ๋๋ฅผ ๋ฎ์ถฐ๋ณด์ธ์.")
# ์ฐธ๊ณ ์นดํผ๊ฐ ์์ด๋ LLM์๊ฒ ์์ฑ์ ์์ฒญํ ์๋ ์๋๋ก ํจ (์ ํ์ฌํญ)
# progress_bar.empty()
# status_text_gen.empty()
# return None
references_text_for_prompt = "์ ์ฌ๋ ๋์ ์ฐธ๊ณ ์นดํผ๋ฅผ ์ฐพ์ง ๋ชปํ์ต๋๋ค."
else:
references_text_for_prompt = "\n".join([
f"{j+1}. \"{ref['copy']}\" - {ref['brand']} (์ ์ฌ๋: {ref['similarity']:.3f})"
for j, ref in enumerate(reference_copies)
])
status_text_gen.text("๐ค AI ์นดํผ ์์ฑ ์ค...")
progress_bar.progress(80)
creativity_guidance = {
"๋ณด์์ ": "์์ ํ๊ณ ๊ฒ์ฆ๋ ํํ์ ์ฌ์ฉํ์ฌ",
"๊ท ํ": "์ฐฝ์์ ์ด๋ฉด์๋ ์ ์ ํ ์์ค์์",
"์ฐฝ์์ ": "๋
์ฐฝ์ ์ด๊ณ ํ์ ์ ์ธ ํํ์ผ๋ก"
}
prompt = f"""
๋น์ ์ ํ๊ตญ์ ์ ๋ฌธ ๊ด๊ณ ์นดํผ๋ผ์ดํฐ์
๋๋ค.
**์์ฒญ์ฌํญ:** {user_req}
**ํ๊ฒ ๊ณ ๊ฐ:** {target_aud}
**๋ธ๋๋ ํค:** {brand_tn}
**์ฐฝ์์ฑ ์์ค:** {creative_lvl} ({creativity_guidance[creative_lvl]})
**์ฐธ๊ณ ์นดํผ๋ค (์๋ฏธ์ ์ ์ฌ๋ ๊ธฐ๋ฐ ์ ๋ณ):**
{references_text_for_prompt}
**์์ฑ ๊ฐ์ด๋๋ผ์ธ:**
1. ์ ์ฐธ๊ณ ์นดํผ๋ค์ ์คํ์ผ๊ณผ ํค์ ๋ถ์ํ๊ณ , ์์ฒญ์ฌํญ์ ๋ง์ถฐ ์๋ก์ด ์นดํผ {num_con}๊ฐ๋ฅผ ์์ฑํด์ฃผ์ธ์.
2. ๋ง์ฝ ์ฐธ๊ณ ์นดํผ๊ฐ ์๋ค๋ฉด, ์์ฒญ์ฌํญ๊ณผ ํ๊ฒ ๊ณ ๊ฐ, ๋ธ๋๋ ํค, ์ฐฝ์์ฑ ์์ค์๋ง ์ง์คํ์ฌ ์์ฑํด์ฃผ์ธ์.
3. ๊ฐ ์นดํผ๋ ํ๊ตญ์ด๋ก ์์ฐ์ค๋ฝ๊ณ ๋งค๋ ฅ์ ์ด์ด์ผ ํฉ๋๋ค.
4. {target_aud}์๊ฒ ์ดํํ ์ ์๋ ํํ์ ์ฌ์ฉํด์ฃผ์ธ์.
5. {brand_tn} ํค์ค๋งค๋๋ฅผ ์ ์งํด์ฃผ์ธ์.
**์ถ๋ ฅ ํ์ (๊ฐ ์นดํผ์ ๊ฐ๋จํ ์ค๋ช
ํฌํจ):**
1. [์์ฑ๋ ์นดํผ 1]
- ์ค๋ช
: (์ด ์นดํผ๊ฐ ์ ํจ๊ณผ์ ์ธ์ง ๋๋ ์ด๋ค ์๋๋ก ์์ฑ๋์๋์ง)
2. [์์ฑ๋ ์นดํผ 2]
- ์ค๋ช
: (์ด ์นดํผ๊ฐ ์ ํจ๊ณผ์ ์ธ์ง ๋๋ ์ด๋ค ์๋๋ก ์์ฑ๋์๋์ง)
... (์์ฒญํ ์ปจ์
์๋งํผ ๋ฐ๋ณต)
**์ถ์ฒ ์นดํผ:** (์ ์์ฑ๋ ์นดํผ ์ค ๊ฐ์ฅ ์ถ์ฒํ๋ ๊ฒ ํ๋์ ๊ทธ ์ด์ )
"""
response = loaded_model.generate_content(prompt)
progress_bar.progress(100)
status_text_gen.text("โ
์๋ฃ!")
time.sleep(0.5)
progress_bar.empty()
status_text_gen.empty()
return {
'references': reference_copies,
'generated_content': response.text,
'search_info': {
'query': search_query,
'total_candidates': len(filtered_df_gen),
'selected_references': len(reference_copies)
},
'settings': {
'category': category_filter,
'target': target_aud,
'tone': brand_tn,
'creative': creative_lvl
}
}
except Exception as e_gen:
st.error(f"โ ์นดํผ ์์ฑ ์คํจ: {e_gen}")
st.error(f"์ค๋ฅ ํ์
: {type(e_gen)}") # ์ค๋ฅ ํ์
์ถ๋ ฅ
import traceback # ์์ธ ํธ๋ ์ด์ค๋ฐฑ
st.error(traceback.format_exc())
progress_bar.empty()
status_text_gen.empty()
return None
# ์์ฑ ๋ฒํผ
if st.button("๐ ์นดํผ ์์ฑํ๊ธฐ", type="primary", use_container_width=True, key="generate_button"):
if not user_request or not user_request.strip():
st.error("โ ์นดํผ ์์ฒญ์ ์
๋ ฅํด์ฃผ์ธ์")
else:
result = generate_copy_with_rag(
user_req=user_request,
category_filter=selected_category,
target_aud=target_audience,
brand_tn=brand_tone,
creative_lvl=creative_level,
num_con=num_concepts
)
if result:
st.markdown("## ๐ ์์ฑ๋ ์นดํผ")
st.markdown("---")
st.info(f"๐ **๊ฒ์ ์ ๋ณด**: {result['search_info']['total_candidates']:,}๊ฐ ํ๋ณด์์ "
f"{result['search_info']['selected_references']}๊ฐ ์ฐธ๊ณ ์นดํผ ์ ๋ณ")
if show_references and result['references']:
with st.expander("๐ ์ฐธ๊ณ ํ ์นดํผ๋ค (์๋ฏธ์ ์ ์ฌ๋ ๊ธฐ๋ฐ ์ ๋ณ)"):
for i, ref in enumerate(result['references'], 1):
st.markdown(f"**{i}.** \"{ref['copy']}\"")
st.markdown(f" - ๋ธ๋๋: {ref['brand']}")
st.markdown(f" - ์ ์ฌ๋: {ref['similarity']:.3f}")
st.markdown("")
st.markdown("### โจ AI๊ฐ ์์ฑํ ์นดํผ:")
st.markdown(result['generated_content'])
try:
result_json = json.dumps({
'timestamp': datetime.now().isoformat(),
'request': user_request,
'settings': result['settings'],
'search_info': result['search_info'],
'generated_content': result['generated_content'],
'references': result['references'] # ์ฐธ๊ณ ์นดํผ๋ JSON์ ํฌํจ
}, ensure_ascii=False, indent=2)
st.download_button(
label="๐พ ๊ฒฐ๊ณผ ๋ค์ด๋ก๋ (JSON)",
data=result_json,
file_name=f"copy_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json",
key="download_button"
)
except Exception as e_json:
st.error(f"โ ๊ฒฐ๊ณผ ๋ค์ด๋ก๋ ํ์ผ ์์ฑ ์คํจ: {e_json}")
# ์์คํ
์ ๋ณด (์ฌ์ด๋๋ฐ ํ๋จ)
st.sidebar.markdown("---")
st.sidebar.markdown("### ๐ RAG ์์คํ
์ ๋ณด")
if loaded_df is not None and loaded_embeddings is not None:
st.sidebar.markdown(f"**์นดํผ ๋ฐ์ดํฐ**: {len(loaded_df):,}๊ฐ")
st.sidebar.markdown(f"**์นดํ
๊ณ ๋ฆฌ**: {loaded_df['์นดํ
๊ณ ๋ฆฌ'].nunique()}๊ฐ")
st.sidebar.markdown(f"**๋ธ๋๋**: {loaded_df['๋ธ๋๋'].nunique()}๊ฐ")
st.sidebar.markdown(f"**์๋ฒ ๋ฉ**: {loaded_embeddings.shape[1]}์ฐจ์") # ๋ก๋๋ ์๋ฒ ๋ฉ ์ฌ์ฉ
st.sidebar.markdown("**๊ฒ์ ์์ง**: Korean SBERT")
st.sidebar.markdown("**ํธ์คํ
**: ๐ค Hugging Face")
# ์ฌ์ฉ๋ฒ ๊ฐ์ด๋
with st.expander("๐ก RAG ์์คํ
์ฌ์ฉ๋ฒ ๊ฐ์ด๋"):
st.markdown("""
### ๐ฏ ํจ๊ณผ์ ์ธ ์ฌ์ฉ๋ฒ
(๊ธฐ์กด ๋ด์ฉ๊ณผ ๋์ผ)
""")
# ํธํฐ
st.markdown("---")
st.markdown(
"๐ก **AI ์นดํผ๋ผ์ดํฐ** | 37,671๊ฐ ์ค์ ๊ด๊ณ ์นดํผ ๋ฐ์ดํฐ ๊ธฐ๋ฐ | "
"RAG(๊ฒ์ ์ฆ๊ฐ ์์ฑ) ์์คํ
powered by Korean SBERT + Gemini AI"
)
# ์ฑ๋ฅ ๋ชจ๋ํฐ๋ง (๊ฐ๋ฐ์์ฉ)
if os.getenv("DEBUG_MODE") == "true": # ํ๊ฒฝ๋ณ์ ๊ฐ์ ๋ฌธ์์ด "true"๋ก ๋น๊ต
st.sidebar.markdown("### ๐ง ๋๋ฒ๊ทธ ์ ๋ณด (ํ์ฑํ๋จ)")
if 'loaded_embeddings' in locals() and loaded_embeddings is not None: # ๋ก๋๋ ๋ณ์ ์ฌ์ฉ
st.sidebar.write(f"์๋ฒ ๋ฉ ๋ฉ๋ชจ๋ฆฌ: {loaded_embeddings.nbytes / (1024*1024):.1f}MB")
st.sidebar.write(f"Streamlit ๋ฒ์ : {st.__version__}")
st.sidebar.write(f"Pandas ๋ฒ์ : {pd.__version__}")
st.sidebar.write(f"Numpy ๋ฒ์ (Global): {np.__version__ if 'np' in globals() else 'Not imported globally'}")
st.sidebar.write(f"Torch ๋ฒ์ : {torch.__version__ if 'torch' in globals() else 'Torch not directly used here'}") # torch๋ sentence-transformers ๋ด๋ถ ์ฌ์ฉ
st.sidebar.write(f"google-generativeai ๋ฒ์ : {genai.__version__}") |