Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -41,8 +41,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStream
|
|
41 |
# =============================================================================
|
42 |
# SAM-2 Alias Patch & Installer
|
43 |
# =============================================================================
|
|
|
44 |
try:
|
45 |
-
import sam_2
|
46 |
sys.modules['sam2'] = sam_2
|
47 |
for sub in ['build_sam','automatic_mask_generator','modeling.sam2_base']:
|
48 |
sys.modules[f'sam2.{sub}'] = importlib.import_module(f'sam_2.{sub}')
|
@@ -115,6 +116,8 @@ class MedicalVLMAgent:
|
|
115 |
"Disclaimer: I am not a licensed medical professional."
|
116 |
)
|
117 |
def run(self, text, image=None):
|
|
|
|
|
118 |
msgs = [{"role":"system","content":[{"type":"text","text":self.sys_prompt}]}]
|
119 |
user_cont = []
|
120 |
if image:
|
@@ -173,127 +176,71 @@ try:
|
|
173 |
chex_model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-2-3b", device_map='auto', trust_remote_code=True)
|
174 |
if torch.cuda.is_available(): chex_model = chex_model.half()
|
175 |
chex_model.eval(); CHEX_AVAILABLE=True
|
176 |
-
except Exception
|
177 |
-
print(f"CheXagent loading error: {e}")
|
178 |
CHEX_AVAILABLE=False
|
179 |
|
180 |
@torch.no_grad()
|
181 |
def report_generation(im1, im2):
|
182 |
-
if not CHEX_AVAILABLE:
|
183 |
-
|
184 |
-
|
185 |
-
return "Report generation feature is in development. CheXagent model loaded successfully."
|
186 |
|
187 |
@torch.no_grad()
|
188 |
def phrase_grounding(image, prompt):
|
189 |
-
if not CHEX_AVAILABLE:
|
190 |
-
|
191 |
-
if image is None:
|
192 |
-
return "Please upload an image", None
|
193 |
-
# Simple mock grounding - actual implementation would use CheXagent's grounding capabilities
|
194 |
-
w,h=image.size;
|
195 |
-
draw=ImageDraw.Draw(image)
|
196 |
draw.rectangle([(w*0.25,h*0.25),(w*0.75,h*0.75)], outline='red', width=3)
|
197 |
-
return
|
198 |
|
199 |
# =============================================================================
|
200 |
# Gradio UI
|
201 |
# =============================================================================
|
202 |
-
|
203 |
def create_ui():
|
|
|
204 |
try:
|
205 |
m, p, d = load_qwen_model_and_processor()
|
206 |
-
med = MedicalVLMAgent(m,
|
207 |
-
|
208 |
-
|
209 |
-
except Exception as e:
|
210 |
-
print(f"Failed to load Qwen model: {e}")
|
211 |
-
QW = False
|
212 |
med = None
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
if med is None:
|
217 |
-
return "Medical Q&A model is not available. Please check the logs for loading errors."
|
218 |
-
try:
|
219 |
-
return med.run(text, image)
|
220 |
-
except Exception as e:
|
221 |
-
return f"Error processing request: {str(e)}"
|
222 |
-
|
223 |
-
with gr.Blocks(title="Medical AI Assistant") as demo:
|
224 |
gr.Markdown("# Medical AI Assistant")
|
225 |
-
gr.Markdown("
|
226 |
-
gr.Markdown(f"**Model Status**: Qwen: {'β
' if QW else 'β'} | SAM-2: {'β
' if _mask_generator else 'β'} | CheXagent: {'β
' if CHEX_AVAILABLE else 'β'}")
|
227 |
-
|
228 |
with gr.Tab("Medical Q&A"):
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
out = gr.Textbox(label="AI Response", lines=10)
|
241 |
-
|
242 |
-
ask_btn.click(safe_medical_qa, [txt, img], out)
|
243 |
-
|
244 |
-
with gr.Tab("Image Segmentation"):
|
245 |
-
gr.Markdown("Automatically segment medical images using SAM-2 or fallback method.")
|
246 |
-
with gr.Row():
|
247 |
-
with gr.Column():
|
248 |
-
seg = gr.Image(type='pil', label="Input Medical Image")
|
249 |
-
seg_btn = gr.Button("Segment Image", variant="primary")
|
250 |
-
with gr.Column():
|
251 |
-
so = gr.Image(label="Segmented Output")
|
252 |
-
ss = gr.Textbox(label="Segmentation Status")
|
253 |
-
|
254 |
fn = segmentation_interface if _mask_generator else fallback_segmentation
|
255 |
-
|
256 |
-
|
257 |
with gr.Tab("CheXagent Report"):
|
258 |
-
gr.
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
rout = gr.Markdown(label="Generated Report")
|
266 |
-
|
267 |
-
report_btn.click(
|
268 |
-
lambda x, y: report_generation(x, y),
|
269 |
-
[c1, c2],
|
270 |
-
rout
|
271 |
-
)
|
272 |
-
|
273 |
with gr.Tab("CheXagent Grounding"):
|
274 |
-
gr.
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
ground_btn = gr.Button("Ground Phrase", variant="primary")
|
283 |
-
with gr.Column():
|
284 |
-
gout = gr.Textbox(label="Grounding Result")
|
285 |
-
goimg = gr.Image(label="Image with Grounding")
|
286 |
-
|
287 |
-
ground_btn.click(phrase_grounding, [gi, gp], [gout, goimg])
|
288 |
-
|
289 |
return demo
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
-
print("Starting Medical AI Assistant...")
|
293 |
ui = create_ui()
|
294 |
-
ui.launch(
|
295 |
-
server_name='0.0.0.0',
|
296 |
-
server_port=7860,
|
297 |
-
share=True,
|
298 |
-
show_error=True
|
299 |
-
)
|
|
|
41 |
# =============================================================================
|
42 |
# SAM-2 Alias Patch & Installer
|
43 |
# =============================================================================
|
44 |
+
import importlib
|
45 |
try:
|
46 |
+
import sam_2
|
47 |
sys.modules['sam2'] = sam_2
|
48 |
for sub in ['build_sam','automatic_mask_generator','modeling.sam2_base']:
|
49 |
sys.modules[f'sam2.{sub}'] = importlib.import_module(f'sam_2.{sub}')
|
|
|
116 |
"Disclaimer: I am not a licensed medical professional."
|
117 |
)
|
118 |
def run(self, text, image=None):
|
119 |
+
if self.model is None:
|
120 |
+
return "Qwen-VLM model not loaded"
|
121 |
msgs = [{"role":"system","content":[{"type":"text","text":self.sys_prompt}]}]
|
122 |
user_cont = []
|
123 |
if image:
|
|
|
176 |
chex_model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-2-3b", device_map='auto', trust_remote_code=True)
|
177 |
if torch.cuda.is_available(): chex_model = chex_model.half()
|
178 |
chex_model.eval(); CHEX_AVAILABLE=True
|
179 |
+
except Exception:
|
|
|
180 |
CHEX_AVAILABLE=False
|
181 |
|
182 |
@torch.no_grad()
|
183 |
def report_generation(im1, im2):
|
184 |
+
if not CHEX_AVAILABLE: yield "CheXagent unavailable"; return
|
185 |
+
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True)
|
186 |
+
yield "Report streaming not fully implemented"
|
|
|
187 |
|
188 |
@torch.no_grad()
|
189 |
def phrase_grounding(image, prompt):
|
190 |
+
if not CHEX_AVAILABLE: return "CheXagent unavailable", None
|
191 |
+
w,h=image.size; draw=ImageDraw.Draw(image)
|
|
|
|
|
|
|
|
|
|
|
192 |
draw.rectangle([(w*0.25,h*0.25),(w*0.75,h*0.75)], outline='red', width=3)
|
193 |
+
return prompt, image
|
194 |
|
195 |
# =============================================================================
|
196 |
# Gradio UI
|
197 |
# =============================================================================
|
|
|
198 |
def create_ui():
|
199 |
+
# Load Qwen agent
|
200 |
try:
|
201 |
m, p, d = load_qwen_model_and_processor()
|
202 |
+
med = MedicalVLMAgent(m,p,d)
|
203 |
+
qwen_ok = True
|
204 |
+
except Exception:
|
|
|
|
|
|
|
205 |
med = None
|
206 |
+
qwen_ok = False
|
207 |
+
|
208 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
gr.Markdown("# Medical AI Assistant")
|
210 |
+
gr.Markdown(f"- Qwen: {'β
' if qwen_ok else 'β'} - SAM-2: {'β
' if _mask_generator else 'β'} - CheX: {'β
' if CHEX_AVAILABLE else 'β'}")
|
|
|
|
|
211 |
with gr.Tab("Medical Q&A"):
|
212 |
+
if qwen_ok and med is not None:
|
213 |
+
txt = gr.Textbox(label="Question / description", lines=3)
|
214 |
+
img = gr.Image(label="Optional image", type='pil')
|
215 |
+
out = gr.Textbox(label="Answer")
|
216 |
+
gr.Button("Ask").click(med.run, inputs=[txt, img], outputs=out)
|
217 |
+
else:
|
218 |
+
gr.Markdown("β Medical Q&A is not available.")
|
219 |
+
with gr.Tab("Segmentation"):
|
220 |
+
seg = gr.Image(label="Upload image", type='pil')
|
221 |
+
so = gr.Image(label="Result")
|
222 |
+
ss = gr.Textbox(label="Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
fn = segmentation_interface if _mask_generator else fallback_segmentation
|
224 |
+
gr.Button("Segment").click(fn, inputs=[seg], outputs=[so, ss])
|
|
|
225 |
with gr.Tab("CheXagent Report"):
|
226 |
+
c1 = gr.Image(type='pil', label="Image 1")
|
227 |
+
c2 = gr.Image(type='pil', label="Image 2")
|
228 |
+
rout = gr.Markdown()
|
229 |
+
if CHEX_AVAILABLE:
|
230 |
+
gr.Interface(fn=report_generation, inputs=[c1, c2], outputs=rout, live=True).render()
|
231 |
+
else:
|
232 |
+
gr.Markdown("β CheXagent report not available.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
with gr.Tab("CheXagent Grounding"):
|
234 |
+
gi = gr.Image(type='pil', label="Image")
|
235 |
+
gp = gr.Textbox(label="Prompt")
|
236 |
+
gout = gr.Textbox(label="Response")
|
237 |
+
goimg = gr.Image(label="Output Image")
|
238 |
+
if CHEX_AVAILABLE:
|
239 |
+
gr.Interface(fn=phrase_grounding, inputs=[gi, gp], outputs=[gout, goimg]).render()
|
240 |
+
else:
|
241 |
+
gr.Markdown("β CheXagent grounding not available.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
return demo
|
243 |
|
244 |
if __name__ == "__main__":
|
|
|
245 |
ui = create_ui()
|
246 |
+
ui.launch(server_name='0.0.0.0', server_port=7860, share=True)
|
|
|
|
|
|
|
|
|
|