Spaces:
Sleeping
Sleeping
Commit
·
c04077b
1
Parent(s):
d478238
Add requirements.txt and medical VLM SAM-2 CheXagent demo
Browse files- app.py +435 -0
- requirements.txt +32 -0
- sam2 +1 -0
app.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
Combined Medical-VLM, **SAM-2 automatic masking**, and CheXagent demo.
|
6 |
+
|
7 |
+
⭑ Changes ⭑
|
8 |
+
-----------
|
9 |
+
1. All Segment-Anything-v1 fallback code has been removed.
|
10 |
+
2. A single **SAM-2 AutomaticMaskGenerator** is built once and reused.
|
11 |
+
3. Tumor-segmentation tab now runs *fully automatic* masking — no bounding-box textbox.
|
12 |
+
4. Fixed SAM-2 config path to use relative path instead of absolute path.
|
13 |
+
"""
|
14 |
+
|
15 |
+
# ---------------------------------------------------------------------
|
16 |
+
# Standard libs
|
17 |
+
# ---------------------------------------------------------------------
|
18 |
+
# ---------------------------------------------------------------------
|
19 |
+
import os, warnings
|
20 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # CPU fallback for missing MPS ops
|
21 |
+
warnings.filterwarnings("ignore", message=r".*upsample_bicubic2d.*") # hide one-line notice
|
22 |
+
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
import uuid
|
26 |
+
import tempfile
|
27 |
+
from threading import Thread
|
28 |
+
|
29 |
+
# ---------------------------------------------------------------------
|
30 |
+
# Third-party libs
|
31 |
+
|
32 |
+
|
33 |
+
# ---------------------------------------------------------------------
|
34 |
+
import torch
|
35 |
+
import numpy as np
|
36 |
+
from PIL import Image, ImageDraw
|
37 |
+
import gradio as gr
|
38 |
+
|
39 |
+
# If you cloned facebookresearch/sam2 into the repo root, make sure it's importable
|
40 |
+
sys.path.append(os.path.abspath("."))
|
41 |
+
|
42 |
+
# =============================================================================
|
43 |
+
# Qwen-VLM imports & helper
|
44 |
+
# =============================================================================
|
45 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
46 |
+
from qwen_vl_utils import process_vision_info
|
47 |
+
|
48 |
+
|
49 |
+
# =============================================================================
|
50 |
+
# SAM-2 imports (only SAM-2, no v1 fallback)
|
51 |
+
# =============================================================================
|
52 |
+
from sam2.build_sam import build_sam2
|
53 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
54 |
+
|
55 |
+
# Alternative: try direct model loading if build_sam2 continues to fail
|
56 |
+
try:
|
57 |
+
from sam2.modeling.sam2_base import SAM2Base
|
58 |
+
from sam2.utils.misc import get_device_index
|
59 |
+
except ImportError:
|
60 |
+
print("Could not import additional SAM2 components")
|
61 |
+
|
62 |
+
|
63 |
+
# =============================================================================
|
64 |
+
# CheXagent imports
|
65 |
+
# =============================================================================
|
66 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
67 |
+
|
68 |
+
|
69 |
+
# ---------------------------------------------------------------------
|
70 |
+
# Devices
|
71 |
+
# ---------------------------------------------------------------------
|
72 |
+
def get_device():
|
73 |
+
if torch.cuda.is_available():
|
74 |
+
return torch.device("cuda")
|
75 |
+
if torch.backends.mps.is_available():
|
76 |
+
return torch.device("mps")
|
77 |
+
return torch.device("cpu")
|
78 |
+
|
79 |
+
|
80 |
+
# =============================================================================
|
81 |
+
# Qwen-VLM model & agent
|
82 |
+
# =============================================================================
|
83 |
+
_qwen_model = None
|
84 |
+
_qwen_processor = None
|
85 |
+
_qwen_device = None
|
86 |
+
|
87 |
+
|
88 |
+
def load_qwen_model_and_processor(hf_token=None):
|
89 |
+
global _qwen_model, _qwen_processor, _qwen_device
|
90 |
+
if _qwen_model is None:
|
91 |
+
_qwen_device = "mps" if torch.backends.mps.is_available() else "cpu"
|
92 |
+
print(f"[Qwen] loading model on {_qwen_device}")
|
93 |
+
auth_kwargs = {"use_auth_token": hf_token} if hf_token else {}
|
94 |
+
_qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
95 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
96 |
+
trust_remote_code=True,
|
97 |
+
attn_implementation="eager",
|
98 |
+
torch_dtype=torch.float32,
|
99 |
+
low_cpu_mem_usage=True,
|
100 |
+
device_map=None,
|
101 |
+
**auth_kwargs,
|
102 |
+
).to(_qwen_device)
|
103 |
+
_qwen_processor = AutoProcessor.from_pretrained(
|
104 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
105 |
+
trust_remote_code=True,
|
106 |
+
**auth_kwargs,
|
107 |
+
)
|
108 |
+
return _qwen_model, _qwen_processor, _qwen_device
|
109 |
+
|
110 |
+
|
111 |
+
class MedicalVLMAgent:
|
112 |
+
"""Light wrapper around Qwen-VLM with an optional image."""
|
113 |
+
|
114 |
+
def __init__(self, model, processor, device):
|
115 |
+
self.model = model
|
116 |
+
self.processor = processor
|
117 |
+
self.device = device
|
118 |
+
self.system_prompt = (
|
119 |
+
"You are a medical information assistant with vision capabilities.\n"
|
120 |
+
"Disclaimer: I am not a licensed medical professional. "
|
121 |
+
"The information provided is for reference only and should not be taken as medical advice."
|
122 |
+
)
|
123 |
+
|
124 |
+
def run(self, user_text: str, image: Image.Image | None = None) -> str:
|
125 |
+
messages = [
|
126 |
+
{"role": "system", "content": [{"type": "text", "text": self.system_prompt}]}
|
127 |
+
]
|
128 |
+
user_content = []
|
129 |
+
if image is not None:
|
130 |
+
tmp = f"/tmp/{uuid.uuid4()}.png"
|
131 |
+
image.save(tmp)
|
132 |
+
user_content.append({"type": "image", "image": tmp})
|
133 |
+
user_content.append({"type": "text", "text": user_text or "Please describe the image."})
|
134 |
+
messages.append({"role": "user", "content": user_content})
|
135 |
+
|
136 |
+
prompt_text = self.processor.apply_chat_template(
|
137 |
+
messages, tokenize=False, add_generation_prompt=True
|
138 |
+
)
|
139 |
+
img_inputs, vid_inputs = process_vision_info(messages)
|
140 |
+
inputs = self.processor(
|
141 |
+
text=[prompt_text],
|
142 |
+
images=img_inputs,
|
143 |
+
videos=vid_inputs,
|
144 |
+
padding=True,
|
145 |
+
return_tensors="pt",
|
146 |
+
).to(self.device)
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
out = self.model.generate(**inputs, max_new_tokens=128)
|
150 |
+
trimmed = out[0][inputs.input_ids.shape[1] :]
|
151 |
+
return self.processor.decode(trimmed, skip_special_tokens=True).strip()
|
152 |
+
|
153 |
+
|
154 |
+
# =============================================================================
|
155 |
+
# SAM-2 model + AutomaticMaskGenerator
|
156 |
+
# =============================================================================
|
157 |
+
|
158 |
+
# =============================================================================
|
159 |
+
# SAM-2.1 model + AutomaticMaskGenerator (concise version)
|
160 |
+
# =============================================================================
|
161 |
+
# =============================================================================
|
162 |
+
# SAM-2.1 model + AutomaticMaskGenerator (final minimal version)
|
163 |
+
# =============================================================================
|
164 |
+
import os
|
165 |
+
from sam2.build_sam import build_sam2
|
166 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
167 |
+
|
168 |
+
def initialize_sam2():
|
169 |
+
# These two files are already in your repo
|
170 |
+
CKPT = "checkpoints/sam2.1_hiera_large.pt" # ≈2.7 GB
|
171 |
+
CFG = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
172 |
+
|
173 |
+
# One chdir so Hydra's search path starts inside sam2/sam2/
|
174 |
+
os.chdir("sam2/sam2")
|
175 |
+
|
176 |
+
device = get_device()
|
177 |
+
print(f"[SAM-2] building model on {device}")
|
178 |
+
|
179 |
+
sam2_model = build_sam2(
|
180 |
+
CFG, # relative to sam2/sam2/
|
181 |
+
CKPT, # relative after chdir
|
182 |
+
device=device,
|
183 |
+
apply_postprocessing=False,
|
184 |
+
)
|
185 |
+
|
186 |
+
mask_gen = SAM2AutomaticMaskGenerator(
|
187 |
+
model=sam2_model,
|
188 |
+
points_per_side=32,
|
189 |
+
pred_iou_thresh=0.86,
|
190 |
+
stability_score_thresh=0.92,
|
191 |
+
crop_n_layers=0,
|
192 |
+
)
|
193 |
+
return sam2_model, mask_gen
|
194 |
+
|
195 |
+
|
196 |
+
# ---------------------- build once ----------------------
|
197 |
+
try:
|
198 |
+
_sam2_model, _mask_generator = initialize_sam2()
|
199 |
+
print("[SAM-2] Successfully initialized!")
|
200 |
+
except Exception as e:
|
201 |
+
print(f"[SAM-2] Failed to initialize: {e}")
|
202 |
+
_sam2_model, _mask_generator = None, None
|
203 |
+
|
204 |
+
def automatic_mask_overlay(image_np: np.ndarray) -> np.ndarray:
|
205 |
+
"""Generate masks and alpha-blend them on top of the original image."""
|
206 |
+
if _mask_generator is None:
|
207 |
+
raise RuntimeError("SAM-2 mask generator not initialized")
|
208 |
+
|
209 |
+
anns = _mask_generator.generate(image_np)
|
210 |
+
if not anns:
|
211 |
+
return image_np
|
212 |
+
|
213 |
+
overlay = image_np.copy()
|
214 |
+
if overlay.ndim == 2: # grayscale → RGB
|
215 |
+
overlay = np.stack([overlay] * 3, axis=2)
|
216 |
+
|
217 |
+
for ann in sorted(anns, key=lambda x: x["area"], reverse=True):
|
218 |
+
m = ann["segmentation"]
|
219 |
+
color = np.random.randint(0, 255, 3, dtype=np.uint8)
|
220 |
+
overlay[m] = (overlay[m] * 0.5 + color * 0.5).astype(np.uint8)
|
221 |
+
|
222 |
+
return overlay
|
223 |
+
|
224 |
+
def tumor_segmentation_interface(image: Image.Image | None):
|
225 |
+
if image is None:
|
226 |
+
return None, "Please upload an image."
|
227 |
+
|
228 |
+
if _mask_generator is None:
|
229 |
+
return None, "SAM-2 not properly initialized. Check the console for errors."
|
230 |
+
|
231 |
+
try:
|
232 |
+
img_np = np.array(image.convert("RGB"))
|
233 |
+
out_np = automatic_mask_overlay(img_np)
|
234 |
+
n_masks = len(_mask_generator.generate(img_np))
|
235 |
+
return Image.fromarray(out_np), f"{n_masks} masks found."
|
236 |
+
except Exception as e:
|
237 |
+
return None, f"SAM-2 error: {e}"
|
238 |
+
|
239 |
+
# =============================================================================
|
240 |
+
# CheXagent set-up (unchanged)
|
241 |
+
# =============================================================================
|
242 |
+
chex_name = "StanfordAIMI/CheXagent-2-3b"
|
243 |
+
chex_tok = AutoTokenizer.from_pretrained(chex_name, trust_remote_code=True)
|
244 |
+
chex_model = AutoModelForCausalLM.from_pretrained(
|
245 |
+
chex_name, device_map="auto", trust_remote_code=True
|
246 |
+
)
|
247 |
+
chex_model = chex_model.half() if torch.cuda.is_available() else chex_model.float()
|
248 |
+
chex_model.eval()
|
249 |
+
|
250 |
+
|
251 |
+
def get_model_device(model):
|
252 |
+
for p in model.parameters():
|
253 |
+
return p.device
|
254 |
+
return torch.device("cpu")
|
255 |
+
|
256 |
+
|
257 |
+
def clean_text(text):
|
258 |
+
return text.replace("</s>", "")
|
259 |
+
|
260 |
+
|
261 |
+
@torch.no_grad()
|
262 |
+
def response_report_generation(pil_image_1, pil_image_2):
|
263 |
+
"""Structured chest-X-ray report (streaming)."""
|
264 |
+
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True, skip_special_tokens=True)
|
265 |
+
paths = []
|
266 |
+
for im in [pil_image_1, pil_image_2]:
|
267 |
+
if im is None:
|
268 |
+
continue
|
269 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
|
270 |
+
im.save(tfile.name)
|
271 |
+
paths.append(tfile.name)
|
272 |
+
|
273 |
+
device = get_model_device(chex_model)
|
274 |
+
anatomies = [
|
275 |
+
"View",
|
276 |
+
"Airway",
|
277 |
+
"Breathing",
|
278 |
+
"Cardiac",
|
279 |
+
"Diaphragm",
|
280 |
+
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, pacemakers)",
|
281 |
+
]
|
282 |
+
prompts = [
|
283 |
+
"Determine the view of this CXR",
|
284 |
+
*[
|
285 |
+
f'Provide a detailed description of "{a}" in the chest X-ray'
|
286 |
+
for a in anatomies[1:]
|
287 |
+
],
|
288 |
+
]
|
289 |
+
|
290 |
+
findings = ""
|
291 |
+
partial = "## Generating Findings (step-by-step):\n\n"
|
292 |
+
for idx, (anat, prompt) in enumerate(zip(anatomies, prompts)):
|
293 |
+
query = chex_tok.from_list_format(
|
294 |
+
[*[{"image": p} for p in paths], {"text": prompt}]
|
295 |
+
)
|
296 |
+
conv = [
|
297 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
298 |
+
{"from": "human", "value": query},
|
299 |
+
]
|
300 |
+
inp = chex_tok.apply_chat_template(
|
301 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
302 |
+
).to(device)
|
303 |
+
generate_kwargs = dict(
|
304 |
+
input_ids=inp,
|
305 |
+
max_new_tokens=512,
|
306 |
+
do_sample=False,
|
307 |
+
num_beams=1,
|
308 |
+
streamer=streamer,
|
309 |
+
)
|
310 |
+
Thread(target=chex_model.generate, kwargs=generate_kwargs).start()
|
311 |
+
partial += f"**Step {idx}: {anat}...**\n\n"
|
312 |
+
for tok in streamer:
|
313 |
+
if idx:
|
314 |
+
findings += tok
|
315 |
+
partial += tok
|
316 |
+
yield clean_text(partial)
|
317 |
+
partial += "\n\n"
|
318 |
+
findings += " "
|
319 |
+
findings = findings.strip()
|
320 |
+
|
321 |
+
# Impression
|
322 |
+
partial += "## Generating Impression\n\n"
|
323 |
+
prompt = f"Write the Impression section for the following Findings: {findings}"
|
324 |
+
conv = [
|
325 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
326 |
+
{"from": "human", "value": chex_tok.from_list_format([{"text": prompt}])},
|
327 |
+
]
|
328 |
+
inp = chex_tok.apply_chat_template(
|
329 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
330 |
+
).to(device)
|
331 |
+
Thread(
|
332 |
+
target=chex_model.generate,
|
333 |
+
kwargs=dict(
|
334 |
+
input_ids=inp,
|
335 |
+
do_sample=False,
|
336 |
+
num_beams=1,
|
337 |
+
max_new_tokens=512,
|
338 |
+
streamer=streamer,
|
339 |
+
),
|
340 |
+
).start()
|
341 |
+
for tok in streamer:
|
342 |
+
partial += tok
|
343 |
+
yield clean_text(partial)
|
344 |
+
yield clean_text(partial)
|
345 |
+
|
346 |
+
|
347 |
+
@torch.no_grad()
|
348 |
+
def response_phrase_grounding(pil_image, prompt_text):
|
349 |
+
"""Very simple visual-grounding placeholder."""
|
350 |
+
if pil_image is None:
|
351 |
+
return "Please upload an image.", None
|
352 |
+
|
353 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
|
354 |
+
pil_image.save(tfile.name)
|
355 |
+
img_path = tfile.name
|
356 |
+
|
357 |
+
device = get_model_device(chex_model)
|
358 |
+
query = chex_tok.from_list_format([{"image": img_path}, {"text": prompt_text}])
|
359 |
+
conv = [
|
360 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
361 |
+
{"from": "human", "value": query},
|
362 |
+
]
|
363 |
+
inp = chex_tok.apply_chat_template(
|
364 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
365 |
+
).to(device)
|
366 |
+
out = chex_model.generate(
|
367 |
+
input_ids=inp, do_sample=False, num_beams=1, max_new_tokens=512
|
368 |
+
)
|
369 |
+
resp = clean_text(chex_tok.decode(out[0][inp.shape[1] :]))
|
370 |
+
|
371 |
+
# simple center box (placeholder)
|
372 |
+
w, h = pil_image.size
|
373 |
+
cx, cy, sz = w // 2, h // 2, min(w, h) // 4
|
374 |
+
draw = ImageDraw.Draw(pil_image)
|
375 |
+
draw.rectangle([(cx - sz, cy - sz), (cx + sz, cy + sz)], outline="red", width=3)
|
376 |
+
|
377 |
+
return resp, pil_image
|
378 |
+
|
379 |
+
|
380 |
+
# =============================================================================
|
381 |
+
# Gradio UI
|
382 |
+
# =============================================================================
|
383 |
+
qwen_model, qwen_proc, qwen_dev = load_qwen_model_and_processor()
|
384 |
+
med_agent = MedicalVLMAgent(qwen_model, qwen_proc, qwen_dev)
|
385 |
+
|
386 |
+
with gr.Blocks() as demo:
|
387 |
+
gr.Markdown("# Combined Medical Q&A · SAM-2 Automatic Masking · CheXagent")
|
388 |
+
|
389 |
+
# ---------------------------------------------------------
|
390 |
+
with gr.Tab("Medical Q&A"):
|
391 |
+
q_in = gr.Textbox(label="Question / description", lines=3)
|
392 |
+
q_img = gr.Image(label="Optional image", type="pil")
|
393 |
+
q_btn = gr.Button("Submit")
|
394 |
+
q_out = gr.Textbox(label="Answer")
|
395 |
+
q_btn.click(fn=med_agent.run, inputs=[q_in, q_img], outputs=q_out)
|
396 |
+
|
397 |
+
# ---------------------------------------------------------
|
398 |
+
with gr.Tab("Automatic masking (SAM-2)"):
|
399 |
+
seg_img = gr.Image(label="Image", type="pil")
|
400 |
+
seg_btn = gr.Button("Run segmentation")
|
401 |
+
seg_out = gr.Image(label="Overlay", type="pil")
|
402 |
+
seg_status = gr.Textbox(label="Status", interactive=False)
|
403 |
+
seg_btn.click(
|
404 |
+
fn=tumor_segmentation_interface,
|
405 |
+
inputs=seg_img,
|
406 |
+
outputs=[seg_out, seg_status],
|
407 |
+
)
|
408 |
+
|
409 |
+
# ---------------------------------------------------------
|
410 |
+
with gr.Tab("CheXagent – Structured report"):
|
411 |
+
gr.Markdown("Upload one or two images; the report streams live.")
|
412 |
+
cx1 = gr.Image(label="Image 1", image_mode="L", type="pil")
|
413 |
+
cx2 = gr.Image(label="Image 2", image_mode="L", type="pil")
|
414 |
+
cx_report = gr.Markdown()
|
415 |
+
gr.Interface(
|
416 |
+
fn=response_report_generation,
|
417 |
+
inputs=[cx1, cx2],
|
418 |
+
outputs=cx_report,
|
419 |
+
live=True,
|
420 |
+
).render()
|
421 |
+
|
422 |
+
# ---------------------------------------------------------
|
423 |
+
with gr.Tab("CheXagent – Visual grounding"):
|
424 |
+
vg_img = gr.Image(image_mode="L", type="pil")
|
425 |
+
vg_prompt = gr.Textbox(value="Locate the highlighted finding:")
|
426 |
+
vg_text = gr.Markdown()
|
427 |
+
vg_out_img = gr.Image()
|
428 |
+
gr.Interface(
|
429 |
+
fn=response_phrase_grounding,
|
430 |
+
inputs=[vg_img, vg_prompt],
|
431 |
+
outputs=[vg_text, vg_out_img],
|
432 |
+
).render()
|
433 |
+
|
434 |
+
if __name__ == "__main__":
|
435 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core ML/AI frameworks
|
2 |
+
torch>=2.0.0
|
3 |
+
torchvision>=0.15.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
pillow>=9.0.0
|
6 |
+
|
7 |
+
# Transformers and related
|
8 |
+
transformers>=4.40.0
|
9 |
+
accelerate>=0.20.0
|
10 |
+
qwen-vl-utils>=0.0.8
|
11 |
+
|
12 |
+
# Gradio for web interface
|
13 |
+
gradio>=4.0.0
|
14 |
+
|
15 |
+
# SAM-2 dependencies
|
16 |
+
opencv-python>=4.8.0
|
17 |
+
matplotlib>=3.5.0
|
18 |
+
hydra-core>=1.3.0
|
19 |
+
omegaconf>=2.3.0
|
20 |
+
|
21 |
+
# Additional utilities
|
22 |
+
safetensors>=0.3.0
|
23 |
+
tokenizers>=0.13.0
|
24 |
+
huggingface-hub>=0.16.0
|
25 |
+
sentencepiece>=0.1.99
|
26 |
+
protobuf>=3.20.0
|
27 |
+
|
28 |
+
# For CheXagent streaming
|
29 |
+
threading-utils
|
30 |
+
|
31 |
+
# Optional but recommended for better performance
|
32 |
+
flash-attn>=2.0.0; sys_platform != "darwin" # Skip on macOS due to compatibility issues
|
sam2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 2b90b9f5ceec907a1c18123530e92e794ad901a4
|