Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
# Load dataset from Hugging Face Hub | |
dataset = load_dataset("pathii/css_design_snippets") | |
# Load pre-trained model and tokenizer | |
model_name = "TinyLlama/TinyLlama_v1.1" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Tokenize dataset | |
def tokenize_function(example): | |
return tokenizer(example["input"], truncation=True) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir="./model", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
save_total_limit=2, | |
save_strategy="epoch" | |
) | |
# Create Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
) | |
# Start training | |
trainer.train() | |