Spaces:
Build error
Build error
Update train.py
Browse files
train.py
CHANGED
@@ -1,19 +1,40 @@
|
|
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
from transformers import TrainingArguments, Trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load quantized model
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Training arguments
|
14 |
training_args = TrainingArguments(
|
15 |
output_dir="/app/checkpoints",
|
16 |
-
per_device_train_batch_size=4,
|
17 |
per_device_eval_batch_size=4,
|
18 |
num_train_epochs=2,
|
19 |
learning_rate=2e-5,
|
@@ -23,26 +44,11 @@ training_args = TrainingArguments(
|
|
23 |
eval_steps=500,
|
24 |
logging_dir="/app/logs",
|
25 |
logging_steps=100,
|
26 |
-
fp16=False,
|
|
|
27 |
deepspeed="/app/ds_config.json"
|
28 |
)
|
29 |
|
30 |
-
# DeepSpeed config
|
31 |
-
with open("/app/ds_config.json", "w") as f:
|
32 |
-
f.write('''
|
33 |
-
{
|
34 |
-
"fp16": {"enabled": false},
|
35 |
-
"bf16": {"enabled": true},
|
36 |
-
"zero_optimization": {
|
37 |
-
"stage": 3,
|
38 |
-
"offload_optimizer": {"device": "cpu"},
|
39 |
-
"offload_param": {"device": "cpu"}
|
40 |
-
},
|
41 |
-
"train_batch_size": "auto",
|
42 |
-
"gradient_accumulation_steps": 4
|
43 |
-
}
|
44 |
-
''')
|
45 |
-
|
46 |
# Initialize trainer
|
47 |
trainer = Trainer(
|
48 |
model=model,
|
@@ -52,7 +58,10 @@ trainer = Trainer(
|
|
52 |
)
|
53 |
|
54 |
# Train
|
55 |
-
|
|
|
|
|
|
|
56 |
|
57 |
# Save model
|
58 |
model.save_pretrained("/app/fine_tuned_model")
|
|
|
1 |
+
import os
|
2 |
from unsloth import FastLanguageModel
|
3 |
from transformers import TrainingArguments, Trainer
|
4 |
+
from datasets import load_dataset
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Validate environment variable
|
8 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
+
if not HF_TOKEN:
|
10 |
+
raise ValueError("HF_TOKEN environment variable not set")
|
11 |
|
12 |
# Load quantized model
|
13 |
+
try:
|
14 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
15 |
+
model_name="deepseek-ai/DeepSeek-V3",
|
16 |
+
dtype=torch.bfloat16,
|
17 |
+
load_in_4bit=True,
|
18 |
+
token=HF_TOKEN
|
19 |
+
)
|
20 |
+
FastLanguageModel.for_training(model)
|
21 |
+
except Exception as e:
|
22 |
+
raise RuntimeError(f"Failed to load model: {str(e)}")
|
23 |
+
|
24 |
+
# Load and prepare dataset (example - replace with your actual dataset)
|
25 |
+
try:
|
26 |
+
dataset = load_dataset("imdb") # Example dataset
|
27 |
+
tokenized_dataset = dataset.map(
|
28 |
+
lambda x: tokenizer(x["text"], truncation=True, padding="max_length"),
|
29 |
+
batched=True
|
30 |
+
)
|
31 |
+
except Exception as e:
|
32 |
+
raise RuntimeError(f"Failed to load/prepare dataset: {str(e)}")
|
33 |
|
34 |
# Training arguments
|
35 |
training_args = TrainingArguments(
|
36 |
output_dir="/app/checkpoints",
|
37 |
+
per_device_train_batch_size=4,
|
38 |
per_device_eval_batch_size=4,
|
39 |
num_train_epochs=2,
|
40 |
learning_rate=2e-5,
|
|
|
44 |
eval_steps=500,
|
45 |
logging_dir="/app/logs",
|
46 |
logging_steps=100,
|
47 |
+
fp16=False,
|
48 |
+
bf16=True,
|
49 |
deepspeed="/app/ds_config.json"
|
50 |
)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Initialize trainer
|
53 |
trainer = Trainer(
|
54 |
model=model,
|
|
|
58 |
)
|
59 |
|
60 |
# Train
|
61 |
+
try:
|
62 |
+
trainer.train()
|
63 |
+
except Exception as e:
|
64 |
+
raise RuntimeError(f"Training failed: {str(e)}")
|
65 |
|
66 |
# Save model
|
67 |
model.save_pretrained("/app/fine_tuned_model")
|