Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,172 +1,172 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
if __name__ == '__main__':
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
import spaces # Import spaces at the very beginning
|
| 7 |
-
import os
|
| 8 |
-
import pandas as pd
|
| 9 |
-
import torch
|
| 10 |
-
import gc
|
| 11 |
-
import re
|
| 12 |
-
import random
|
| 13 |
-
from tqdm.auto import tqdm
|
| 14 |
-
from collections import deque
|
| 15 |
-
from optimum.quanto import freeze, qfloat8, quantize
|
| 16 |
-
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
| 17 |
-
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
| 18 |
-
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
| 19 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 20 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 21 |
-
import gradio as gr
|
| 22 |
-
from accelerate import Accelerator
|
| 23 |
-
|
| 24 |
-
# Instantiate the Accelerator
|
| 25 |
-
accelerator = Accelerator()
|
| 26 |
-
|
| 27 |
-
dtype = torch.bfloat16
|
| 28 |
-
|
| 29 |
-
# Set environment variables for local path
|
| 30 |
-
os.environ['FLUX_DEV'] = '.'
|
| 31 |
-
os.environ['AE'] = '.'
|
| 32 |
-
|
| 33 |
-
bfl_repo = 'black-forest-labs/FLUX.1-schnell'
|
| 34 |
-
revision = 'refs/pr/1'
|
| 35 |
-
|
| 36 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder='scheduler', revision=revision)
|
| 37 |
-
text_encoder = CLIPTextModel.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
| 38 |
-
tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
| 39 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder='text_encoder_2', torch_dtype=dtype, revision=revision)
|
| 40 |
-
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder='tokenizer_2', torch_dtype=dtype, revision=revision)
|
| 41 |
-
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder='vae', torch_dtype=dtype, revision=revision)
|
| 42 |
-
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder='transformer', torch_dtype=dtype, revision=revision)
|
| 43 |
-
|
| 44 |
-
quantize(transformer, weights=qfloat8)
|
| 45 |
-
freeze(transformer)
|
| 46 |
-
quantize(text_encoder_2, weights=qfloat8)
|
| 47 |
-
freeze(text_encoder_2)
|
| 48 |
-
|
| 49 |
-
pipe = FluxPipeline(
|
| 50 |
-
scheduler=scheduler,
|
| 51 |
-
text_encoder=text_encoder,
|
| 52 |
-
tokenizer=tokenizer,
|
| 53 |
-
text_encoder_2=None,
|
| 54 |
-
tokenizer_2=tokenizer_2,
|
| 55 |
-
vae=vae,
|
| 56 |
-
transformer=None,
|
| 57 |
-
)
|
| 58 |
-
pipe.text_encoder_2 = text_encoder_2
|
| 59 |
-
pipe.transformer = transformer
|
| 60 |
-
pipe.enable_model_cpu_offload()
|
| 61 |
-
|
| 62 |
-
# Create a directory to save the generated images
|
| 63 |
-
output_dir = 'generated_images'
|
| 64 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 65 |
-
|
| 66 |
-
# Function to generate a detailed visual description prompt
|
| 67 |
-
def generate_description_prompt(subject, user_prompt, text_generator):
|
| 68 |
-
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
|
| 69 |
-
try:
|
| 70 |
-
generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
|
| 71 |
-
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
| 72 |
-
return generated_description if generated_description else None
|
| 73 |
-
except Exception as e:
|
| 74 |
-
print(f"Error generating description for subject '{subject}': {e}")
|
| 75 |
-
return None
|
| 76 |
-
|
| 77 |
-
# Function to parse descriptions from a given text
|
| 78 |
-
def parse_descriptions(text):
|
| 79 |
-
# Find all descriptions enclosed in brackets
|
| 80 |
-
descriptions = re.findall(r'\[([^\[\]]+)\]', text)
|
| 81 |
-
# Filter descriptions with at least 3 words
|
| 82 |
-
descriptions = [desc.strip() for desc in descriptions if len(desc.split()) >= 3]
|
| 83 |
-
return descriptions
|
| 84 |
-
|
| 85 |
-
# Seed words pool
|
| 86 |
-
seed_words = []
|
| 87 |
-
|
| 88 |
-
used_words = set()
|
| 89 |
-
paused = False
|
| 90 |
-
|
| 91 |
-
# Queue to store parsed descriptions
|
| 92 |
-
parsed_descriptions_queue = deque()
|
| 93 |
-
|
| 94 |
-
# Usage limits
|
| 95 |
-
MAX_DESCRIPTIONS = 10
|
| 96 |
-
MAX_IMAGES = 5
|
| 97 |
-
|
| 98 |
-
@spaces.GPU
|
| 99 |
-
def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_iterations=50):
|
| 100 |
-
global paused
|
| 101 |
-
descriptions = []
|
| 102 |
-
description_queue = deque()
|
| 103 |
-
iteration_count = 0
|
| 104 |
-
|
| 105 |
-
# Initialize the text generation pipeline with 16-bit precision
|
| 106 |
-
print("Initializing the text generation pipeline with 16-bit precision...")
|
| 107 |
-
model_name = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
|
| 108 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')
|
| 109 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 110 |
-
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 111 |
-
print("Text generation pipeline initialized with 16-bit precision.")
|
| 112 |
-
|
| 113 |
-
# Populate the seed_words array with user input
|
| 114 |
-
seed_words.extend(re.findall(r'"(.*?)"', seed_words_input))
|
| 115 |
-
|
| 116 |
-
while iteration_count < max_iterations and len(parsed_descriptions_queue) < MAX_DESCRIPTIONS:
|
| 117 |
-
if paused:
|
| 118 |
-
break
|
| 119 |
-
|
| 120 |
-
# Select a subject that has not been used
|
| 121 |
-
available_subjects = [word for word in seed_words if word not in used_words]
|
| 122 |
-
if not available_subjects:
|
| 123 |
-
print("No more available subjects to use.")
|
| 124 |
-
break
|
| 125 |
-
|
| 126 |
-
subject = random.choice(available_subjects)
|
| 127 |
-
generated_description = generate_description_prompt(subject, user_prompt, text_generator)
|
| 128 |
-
|
| 129 |
-
if generated_description:
|
| 130 |
-
# Remove any offending symbols
|
| 131 |
-
clean_description = generated_description.encode('ascii', 'ignore').decode('ascii')
|
| 132 |
-
description_queue.append({'subject': subject, 'description': clean_description})
|
| 133 |
-
|
| 134 |
-
# Print the generated description to the command line
|
| 135 |
-
print(f"Generated description for subject '{subject}': {clean_description}")
|
| 136 |
-
|
| 137 |
-
# Update used words and seed words
|
| 138 |
-
used_words.add(subject)
|
| 139 |
-
seed_words.append(clean_description) # Add the generated description to the seed bank array
|
| 140 |
-
|
| 141 |
-
# Parse and append descriptions every 3 iterations
|
| 142 |
-
if iteration_count % 3 == 0:
|
| 143 |
-
parsed_descriptions = parse_descriptions(clean_description)
|
| 144 |
-
parsed_descriptions_queue.extend(parsed_descriptions)
|
| 145 |
-
|
| 146 |
-
iteration_count += 1
|
| 147 |
-
|
| 148 |
-
return list(parsed_descriptions_queue)
|
| 149 |
-
|
| 150 |
-
@spaces.GPU(duration=120)
|
| 151 |
-
def generate_images(parsed_descriptions):
|
| 152 |
-
# If there are fewer than MAX_IMAGES descriptions, use whatever is available
|
| 153 |
-
if len(parsed_descriptions) < MAX_IMAGES:
|
| 154 |
-
prompts = parsed_descriptions
|
| 155 |
-
else:
|
| 156 |
-
prompts = [parsed_descriptions.pop(0) for _ in range(MAX_IMAGES)]
|
| 157 |
-
|
| 158 |
-
# Generate images from the parsed descriptions
|
| 159 |
-
images = []
|
| 160 |
-
for prompt in prompts:
|
| 161 |
-
images.extend(pipe(prompt, num_images=1).images)
|
| 162 |
-
|
| 163 |
-
return images
|
| 164 |
-
|
| 165 |
-
# Create Gradio Interface
|
| 166 |
-
def combined_function(user_prompt, seed_words_input):
|
| 167 |
-
parsed_descriptions = generate_descriptions(user_prompt, seed_words_input)
|
| 168 |
-
images = generate_images(parsed_descriptions)
|
| 169 |
-
return images
|
| 170 |
|
| 171 |
interface = gr.Interface(
|
| 172 |
fn=combined_function,
|
|
@@ -175,3 +175,4 @@ if __name__ == '__main__':
|
|
| 175 |
)
|
| 176 |
|
| 177 |
interface.launch()
|
|
|
|
|
|
| 1 |
+
import spaces # beginn
|
| 2 |
+
import torch.multiprocessing as mp
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import gc
|
| 7 |
+
import re
|
| 8 |
+
import random
|
| 9 |
+
from tqdm.auto import tqdm
|
| 10 |
+
from collections import deque
|
| 11 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
| 12 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
| 13 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
| 14 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
| 15 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 16 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from accelerate import Accelerator
|
| 19 |
+
|
| 20 |
+
# Instantiate the Accelerator
|
| 21 |
+
accelerator = Accelerator()
|
| 22 |
+
|
| 23 |
+
dtype = torch.bfloat16
|
| 24 |
+
|
| 25 |
+
# Set environment variables for local path
|
| 26 |
+
os.environ['FLUX_DEV'] = '.'
|
| 27 |
+
os.environ['AE'] = '.'
|
| 28 |
+
|
| 29 |
+
bfl_repo = 'black-forest-labs/FLUX.1-schnell'
|
| 30 |
+
revision = 'refs/pr/1'
|
| 31 |
+
|
| 32 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder='scheduler', revision=revision)
|
| 33 |
+
text_encoder = CLIPTextModel.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
| 34 |
+
tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
| 35 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder='text_encoder_2', torch_dtype=dtype, revision=revision)
|
| 36 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder='tokenizer_2', torch_dtype=dtype, revision=revision)
|
| 37 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder='vae', torch_dtype=dtype, revision=revision)
|
| 38 |
+
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder='transformer', torch_dtype=dtype, revision=revision)
|
| 39 |
+
|
| 40 |
+
quantize(transformer, weights=qfloat8)
|
| 41 |
+
freeze(transformer)
|
| 42 |
+
quantize(text_encoder_2, weights=qfloat8)
|
| 43 |
+
freeze(text_encoder_2)
|
| 44 |
+
|
| 45 |
+
pipe = FluxPipeline(
|
| 46 |
+
scheduler=scheduler,
|
| 47 |
+
text_encoder=text_encoder,
|
| 48 |
+
tokenizer=tokenizer,
|
| 49 |
+
text_encoder_2=None,
|
| 50 |
+
tokenizer_2=tokenizer_2,
|
| 51 |
+
vae=vae,
|
| 52 |
+
transformer=None,
|
| 53 |
+
)
|
| 54 |
+
pipe.text_encoder_2 = text_encoder_2
|
| 55 |
+
pipe.transformer = transformer
|
| 56 |
+
pipe.enable_model_cpu_offload()
|
| 57 |
+
|
| 58 |
+
# Create a directory to save the generated images
|
| 59 |
+
output_dir = 'generated_images'
|
| 60 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 61 |
+
|
| 62 |
+
# Function to generate a detailed visual description prompt
|
| 63 |
+
def generate_description_prompt(subject, user_prompt, text_generator):
|
| 64 |
+
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
|
| 65 |
+
try:
|
| 66 |
+
generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
|
| 67 |
+
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
| 68 |
+
return generated_description if generated_description else None
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Error generating description for subject '{subject}': {e}")
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
# Function to parse descriptions from a given text
|
| 74 |
+
def parse_descriptions(text):
|
| 75 |
+
# Find all descriptions enclosed in brackets
|
| 76 |
+
descriptions = re.findall(r'\[([^\[\]]+)\]', text)
|
| 77 |
+
# Filter descriptions with at least 3 words
|
| 78 |
+
descriptions = [desc.strip() for desc in descriptions if len(desc.split()) >= 3]
|
| 79 |
+
return descriptions
|
| 80 |
+
|
| 81 |
+
# Seed words pool
|
| 82 |
+
seed_words = []
|
| 83 |
+
|
| 84 |
+
used_words = set()
|
| 85 |
+
paused = False
|
| 86 |
+
|
| 87 |
+
# Queue to store parsed descriptions
|
| 88 |
+
parsed_descriptions_queue = deque()
|
| 89 |
+
|
| 90 |
+
# Usage limits
|
| 91 |
+
MAX_DESCRIPTIONS = 10
|
| 92 |
+
MAX_IMAGES = 5
|
| 93 |
+
|
| 94 |
+
@spaces.GPU
|
| 95 |
+
def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_iterations=50):
|
| 96 |
+
global paused
|
| 97 |
+
descriptions = []
|
| 98 |
+
description_queue = deque()
|
| 99 |
+
iteration_count = 0
|
| 100 |
+
|
| 101 |
+
# Initialize the text generation pipeline with 16-bit precision
|
| 102 |
+
print("Initializing the text generation pipeline with 16-bit precision...")
|
| 103 |
+
model_name = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
|
| 104 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')
|
| 105 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 106 |
+
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 107 |
+
print("Text generation pipeline initialized with 16-bit precision.")
|
| 108 |
+
|
| 109 |
+
# Populate the seed_words array with user input
|
| 110 |
+
seed_words.extend(re.findall(r'"(.*?)"', seed_words_input))
|
| 111 |
+
|
| 112 |
+
while iteration_count < max_iterations and len(parsed_descriptions_queue) < MAX_DESCRIPTIONS:
|
| 113 |
+
if paused:
|
| 114 |
+
break
|
| 115 |
+
|
| 116 |
+
# Select a subject that has not been used
|
| 117 |
+
available_subjects = [word for word in seed_words if word not in used_words]
|
| 118 |
+
if not available_subjects:
|
| 119 |
+
print("No more available subjects to use.")
|
| 120 |
+
break
|
| 121 |
+
|
| 122 |
+
subject = random.choice(available_subjects)
|
| 123 |
+
generated_description = generate_description_prompt(subject, user_prompt, text_generator)
|
| 124 |
+
|
| 125 |
+
if generated_description:
|
| 126 |
+
# Remove any offending symbols
|
| 127 |
+
clean_description = generated_description.encode('ascii', 'ignore').decode('ascii')
|
| 128 |
+
description_queue.append({'subject': subject, 'description': clean_description})
|
| 129 |
+
|
| 130 |
+
# Print the generated description to the command line
|
| 131 |
+
print(f"Generated description for subject '{subject}': {clean_description}")
|
| 132 |
+
|
| 133 |
+
# Update used words and seed words
|
| 134 |
+
used_words.add(subject)
|
| 135 |
+
seed_words.append(clean_description) # Add the generated description to the seed bank array
|
| 136 |
+
|
| 137 |
+
# Parse and append descriptions every 3 iterations
|
| 138 |
+
if iteration_count % 3 == 0:
|
| 139 |
+
parsed_descriptions = parse_descriptions(clean_description)
|
| 140 |
+
parsed_descriptions_queue.extend(parsed_descriptions)
|
| 141 |
+
|
| 142 |
+
iteration_count += 1
|
| 143 |
+
|
| 144 |
+
return list(parsed_descriptions_queue)
|
| 145 |
+
|
| 146 |
+
@spaces.GPU(duration=120)
|
| 147 |
+
def generate_images(parsed_descriptions):
|
| 148 |
+
# If there are fewer than MAX_IMAGES descriptions, use whatever is available
|
| 149 |
+
if len(parsed_descriptions) < MAX_IMAGES:
|
| 150 |
+
prompts = parsed_descriptions
|
| 151 |
+
else:
|
| 152 |
+
prompts = [parsed_descriptions.pop(0) for _ in range(MAX_IMAGES)]
|
| 153 |
+
|
| 154 |
+
# Generate images from the parsed descriptions
|
| 155 |
+
images = []
|
| 156 |
+
for prompt in prompts:
|
| 157 |
+
images.extend(pipe(prompt, num_images=1).images)
|
| 158 |
+
|
| 159 |
+
return images
|
| 160 |
+
|
| 161 |
+
# Create Gradio Interface
|
| 162 |
+
def combined_function(user_prompt, seed_words_input):
|
| 163 |
+
parsed_descriptions = generate_descriptions(user_prompt, seed_words_input)
|
| 164 |
+
images = generate_images(parsed_descriptions)
|
| 165 |
+
return images
|
| 166 |
|
| 167 |
if __name__ == '__main__':
|
| 168 |
+
mp.set_start_method('spawn')
|
| 169 |
+
initialize_cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
interface = gr.Interface(
|
| 172 |
fn=combined_function,
|
|
|
|
| 175 |
)
|
| 176 |
|
| 177 |
interface.launch()
|
| 178 |
+
|